@@ -840,6 +840,99 @@ module attributes {transform.with_named_sequence} {
840840 }
841841}
842842
843+ // -----
844+
845+ ///----------------------------------------------------------------------------------------
846+ /// Tests for linalg.mmt4d
847+ ///----------------------------------------------------------------------------------------
848+
849+ func.func @mmt4d (%A: memref <16 x16 x8 x1 xf32 >, %B: memref <16 x16 x8 x1 xf32 >, %C_in: memref <16 x16 x8 x8 xf32 >) {
850+ linalg.mmt4d ins (%A , %B: memref <16 x16 x8 x1 xf32 >, memref <16 x16 x8 x1 xf32 >)
851+ outs (%C_in: memref <16 x16 x8 x8 xf32 >)
852+ return
853+ }
854+
855+ // CHECK-LABEL: func.func @mmt4d(
856+ // CHECK-SAME: %[[A:.*]]: memref<16x16x8x1xf32>, %[[B:.*]]: memref<16x16x8x1xf32>, %[[C:.*]]: memref<16x16x8x8xf32>) {
857+ // CHECK: %[[VEC_A:.*]] = vector.transfer_read %[[A]]{{.*}} : memref<16x16x8x1xf32>, vector<16x16x16x8x8x1xf32>
858+ // CHECK: %[[VEC_B:.*]] = vector.transfer_read %[[B]]{{.*}} : memref<16x16x8x1xf32>, vector<16x16x16x8x8x1xf32>
859+ // CHECK: %[[VEC_C:.*]] = vector.transfer_read %[[C]]{{.*}} : memref<16x16x8x8xf32>, vector<16x16x8x8xf32>
860+ // CHECK: %[[MUL:.*]] = arith.mulf %[[VEC_A]], %[[VEC_B]] : vector<16x16x16x8x8x1xf32>
861+ // CHECK: %[[RED:.*]] = vector.multi_reduction <add>, %[[MUL]], %[[VEC_C]] [2, 5] : vector<16x16x16x8x8x1xf32> to vector<16x16x8x8xf32>
862+ // CHECK: vector.transfer_write %[[RED]], %[[C]]{{.*}} : vector<16x16x8x8xf32>, memref<16x16x8x8xf32>
863+
864+ module attributes {transform.with_named_sequence } {
865+ transform.named_sequence @__transform_main (%arg1: !transform.any_op {transform.readonly }) {
866+ %mmt4d = transform.structured.match ops {[" linalg.mmt4d" ]} in %arg1 : (!transform.any_op ) -> !transform.any_op
867+ transform.structured.vectorize %mmt4d : !transform.any_op
868+ transform.yield
869+ }
870+ }
871+
872+ // -----
873+
874+ func.func @mmt4d_scalable (%A: memref <16 x16 x8 x1 xf32 >, %B: memref <16 x16 x?x1 xf32 >, %C_in: memref <16 x16 x8 x?xf32 >) {
875+ linalg.mmt4d ins (%A , %B: memref <16 x16 x8 x1 xf32 >, memref <16 x16 x?x1 xf32 >)
876+ outs (%C_in: memref <16 x16 x8 x?xf32 >)
877+ return
878+ }
879+ // CHECK-LABEL: func.func @mmt4d_scalable(
880+ // CHECK-SAME: %[[A:.*]]: memref<16x16x8x1xf32>,
881+ // CHECK-SAME: %[[B:.*]]: memref<16x16x?x1xf32>,
882+ // CHECK-SAME: %[[C_IN:.*]]: memref<16x16x8x?xf32>) {
883+ // CHECK: %[[VAL_0:.*]] = arith.constant 16 : index
884+ // CHECK: %[[VAL_1:.*]] = arith.constant 16 : index
885+ // CHECK: %[[VAL_2:.*]] = arith.constant 16 : index
886+ // CHECK: %[[C8:.*]] = arith.constant 8 : index
887+ // CHECK: %[[C2:.*]] = arith.constant 2 : index
888+ // CHECK: %[[DIM_2:.*]] = memref.dim %[[B]], %[[C2]] : memref<16x16x?x1xf32>
889+ // CHECK: %[[VAL_6:.*]] = arith.constant 1 : index
890+ // CHECK: %[[VEC_A:.*]] = vector.transfer_read %[[A]]{{.*}} : memref<16x16x8x1xf32>, vector<16x16x16x8x[4]x1xf32>
891+ // CHECK: %[[MASK_1:.*]] = vector.create_mask %[[VAL_1]], %[[VAL_2]], %[[DIM_2]], %[[VAL_6]] : vector<16x16x[4]x1xi1>
892+ // CHECK: %[[VEC_B:.*]] = vector.mask %[[MASK_1]] { vector.transfer_read %[[B]]{{.*}} : memref<16x16x?x1xf32>, vector<16x16x16x8x[4]x1xf32> } : vector<16x16x[4]x1xi1> -> vector<16x16x16x8x[4]x1xf32>
893+ // CHECK: %[[MASK_2:.*]] = vector.create_mask %[[VAL_0]], %[[VAL_1]], %[[C8]], %[[DIM_2]] : vector<16x16x8x[4]xi1>
894+ // CHECK: %[[VAL_15:.*]] = vector.mask %[[MASK_2]] { vector.transfer_read %[[C_IN]]{{.*}} : memref<16x16x8x?xf32>, vector<16x16x8x[4]xf32> } : vector<16x16x8x[4]xi1> -> vector<16x16x8x[4]xf32>
895+ // CHECK: %[[VAL_16:.*]] = arith.mulf %[[VEC_A]], %[[VEC_B]] : vector<16x16x16x8x[4]x1xf32>
896+ // CHECK: %[[MASK_3:.*]] = vector.create_mask %[[VAL_0]], %[[VAL_1]], %[[VAL_2]], %[[C8]], %[[DIM_2]], %[[VAL_6]] : vector<16x16x16x8x[4]x1xi1>
897+ // CHECK: %[[VAL_18:.*]] = vector.mask %[[MASK_3]] { vector.multi_reduction <add>, %[[VAL_16]], %[[VAL_15]] [2, 5] : vector<16x16x16x8x[4]x1xf32> to vector<16x16x8x[4]xf32> } : vector<16x16x16x8x[4]x1xi1> -> vector<16x16x8x[4]xf32>
898+ // CHECK: vector.mask %[[MASK_2]] { vector.transfer_write %[[VAL_18]], %[[C_IN]]{{.*}} : vector<16x16x8x[4]xf32>, memref<16x16x8x?xf32> } : vector<16x16x8x[4]xi1>
899+
900+
901+ module attributes {transform.with_named_sequence } {
902+ transform.named_sequence @__transform_main (%arg1: !transform.any_op {transform.readonly }) {
903+ %mmt4d = transform.structured.match ops {[" linalg.mmt4d" ]} in %arg1 : (!transform.any_op ) -> !transform.any_op
904+ transform.structured.vectorize %mmt4d vector_sizes [16 , 16 , 16 , 8 , [4 ], 1 ] : !transform.any_op
905+ transform.yield
906+ }
907+ }
908+
909+ // -----
910+
911+ func.func @mmt4d_scalable_with_assume (%A: memref <16 x16 x8 x1 xf32 >, %B: memref <16 x16 x?x1 xf32 >, %C_in: memref <16 x16 x8 x?xf32 >) {
912+ linalg.mmt4d ins (%A , %B: memref <16 x16 x8 x1 xf32 >, memref <16 x16 x?x1 xf32 >)
913+ outs (%C_in: memref <16 x16 x8 x?xf32 >)
914+ return
915+ }
916+ // CHECK-LABEL: func.func @mmt4d_scalable_with_assume(
917+ // CHECK-SAME: %[[A:.*]]: memref<16x16x8x1xf32>,
918+ // CHECK-SAME: %[[B:.*]]: memref<16x16x?x1xf32>,
919+ // CHECK-SAME: %[[C_IN:.*]]: memref<16x16x8x?xf32>) {
920+ // CHECK-NOT: mask
921+ // CHECK: %[[VEC_A:.*]] = vector.transfer_read %[[A]]{{.*}} : memref<16x16x8x1xf32>, vector<16x16x16x8x[4]x1xf32>
922+ // CHECK: %[[VEC_B:.*]] = vector.transfer_read %[[B]]{{.*}} : memref<16x16x?x1xf32>, vector<16x16x16x8x[4]x1xf32>
923+ // CHECK: %[[VAL_13:.*]] = vector.transfer_read %[[C_IN]]{{.*}} : memref<16x16x8x?xf32>, vector<16x16x8x[4]xf32>
924+ // CHECK: %[[VAL_14:.*]] = arith.mulf %[[VEC_A]], %[[VEC_B]] : vector<16x16x16x8x[4]x1xf32>
925+ // CHECK: %[[VAL_15:.*]] = vector.multi_reduction <add>, %[[VAL_14]], %[[VAL_13]] [2, 5] : vector<16x16x16x8x[4]x1xf32> to vector<16x16x8x[4]xf32>
926+ // CHECK: vector.transfer_write %[[VAL_15]], %[[C_IN]]{{.*}} : vector<16x16x8x[4]xf32>, memref<16x16x8x?xf32>
927+
928+ module attributes {transform.with_named_sequence } {
929+ transform.named_sequence @__transform_main (%arg1: !transform.any_op {transform.readonly }) {
930+ %mmt4d = transform.structured.match ops {[" linalg.mmt4d" ]} in %arg1 : (!transform.any_op ) -> !transform.any_op
931+ transform.structured.vectorize %mmt4d vector_sizes [16 , 16 , 16 , 8 , [4 ], 1 ] {assume_dynamic_dims_match_vec_sizes } : !transform.any_op
932+ transform.yield
933+ }
934+ }
935+
843936///----------------------------------------------------------------------------------------
844937/// Tests for other Ops
845938///----------------------------------------------------------------------------------------
@@ -1094,30 +1187,6 @@ module attributes {transform.with_named_sequence} {
10941187 }
10951188}
10961189
1097- // -----
1098-
1099- func.func @mmt4d (%A: memref <16 x16 x8 x1 xf32 >, %B: memref <16 x16 x8 x1 xf32 >, %C_in: memref <16 x16 x8 x8 xf32 >) {
1100- linalg.mmt4d ins (%A , %B: memref <16 x16 x8 x1 xf32 >, memref <16 x16 x8 x1 xf32 >)
1101- outs (%C_in: memref <16 x16 x8 x8 xf32 >)
1102- return
1103- }
1104-
1105- // CHECK-LABEL: func.func @mmt4d(
1106- // CHECK-SAME: %[[A:.*]]: memref<16x16x8x1xf32>, %[[B:.*]]: memref<16x16x8x1xf32>, %[[C:.*]]: memref<16x16x8x8xf32>) {
1107- // CHECK: %[[VEC_A:.*]] = vector.transfer_read %[[A]]{{.*}} : memref<16x16x8x1xf32>, vector<16x16x16x8x8x1xf32>
1108- // CHECK: %[[VEC_B:.*]] = vector.transfer_read %[[B]]{{.*}} : memref<16x16x8x1xf32>, vector<16x16x16x8x8x1xf32>
1109- // CHECK: %[[VEC_C:.*]] = vector.transfer_read %[[C]]{{.*}} : memref<16x16x8x8xf32>, vector<16x16x8x8xf32>
1110- // CHECK: %[[MUL:.*]] = arith.mulf %[[VEC_A]], %[[VEC_B]] : vector<16x16x16x8x8x1xf32>
1111- // CHECK: %[[RED:.*]] = vector.multi_reduction <add>, %[[MUL]], %[[VEC_C]] [2, 5] : vector<16x16x16x8x8x1xf32> to vector<16x16x8x8xf32>
1112- // CHECK: vector.transfer_write %[[RED]], %[[C]]{{.*}} : vector<16x16x8x8xf32>, memref<16x16x8x8xf32>
1113-
1114- module attributes {transform.with_named_sequence } {
1115- transform.named_sequence @__transform_main (%arg1: !transform.any_op {transform.readonly }) {
1116- %mmt4d = transform.structured.match ops {[" linalg.mmt4d" ]} in %arg1 : (!transform.any_op ) -> !transform.any_op
1117- transform.structured.vectorize %mmt4d : !transform.any_op
1118- transform.yield
1119- }
1120- }
11211190
11221191// -----
11231192
0 commit comments