@@ -43,7 +43,8 @@ func.func @singleton_batch_matvec(%arg0 : tensor<1x128x512xf32>, %arg1 : tensor<
4343 // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = tensor.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
4444 // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = tensor.collapse_shape %[[RHS]] {{\[}}[0, 1]]
4545 // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1]]
46- // CHECK-NEXT: %[[MATMUL:.+]] = linalg.matvec ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : tensor<128x512xf32>, tensor<512xf32>) outs(%[[COLLAPSED_INIT]] : tensor<128xf32>)
46+ // CHECK-NEXT: %[[MATMUL:.+]] = linalg.matvec
47+ // CHECK-SAME: ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : tensor<128x512xf32>, tensor<512xf32>) outs(%[[COLLAPSED_INIT]] : tensor<128xf32>)
4748 // CHECK-NEXT: %[[RES:.*]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0, 1]] output_shape [1, 128]
4849 // CHECK-NEXT: return %[[RES]]
4950 %1 = linalg.batch_matvec ins (%arg0 , %arg1 : tensor <1 x128 x512 xf32 >, tensor <1 x512 xf32 >)
@@ -62,7 +63,8 @@ func.func @singleton_batch_vecmat(%arg0 : tensor<1x?xf32>, %arg1 : tensor<1x?x?x
6263 // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = tensor.collapse_shape %[[LHS]] {{\[}}[0, 1]]
6364 // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = tensor.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
6465 // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1]]
65- // CHECK-NEXT: %[[MATMUL:.+]] = linalg.vecmat ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : tensor<?xf32>, tensor<?x?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?xf32>)
66+ // CHECK-NEXT: %[[MATMUL:.+]] = linalg.vecmat
67+ // CHECK-SAME: ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : tensor<?xf32>, tensor<?x?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?xf32>)
6668 // CHECK-NEXT: %[[DIM1:.*]] = tensor.dim %[[INIT]], %[[C1]]
6769 // CHECK-NEXT: %[[RES:.*]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0, 1]] output_shape [1, %[[DIM1]]]
6870 // CHECK-NEXT: return %[[RES]]
@@ -113,7 +115,8 @@ func.func @matmul_to_matvec_tensor(%arg0: tensor<?x?xf32>, %arg1: tensor<?x1xf32
113115 // CHECK-DAG: %[[C0:.*]] = arith.constant 0
114116 // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = tensor.collapse_shape %[[RHS]] {{\[}}[0, 1]]
115117 // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1]]
116- // CHECK-NEXT: %[[MATMUL:.+]] = linalg.matvec ins(%[[LHS]], %[[COLLAPSED_RHS]] : tensor<?x?xf32>, tensor<?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?xf32>)
118+ // CHECK-NEXT: %[[MATMUL:.+]] = linalg.matvec
119+ // CHECK-SAME: ins(%[[LHS]], %[[COLLAPSED_RHS]] : tensor<?x?xf32>, tensor<?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?xf32>)
117120 // CHECK-NEXT: %[[DIM0:.*]] = tensor.dim %[[INIT]], %[[C0]]
118121 // CHECK-NEXT: %[[RES:.*]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0, 1]] output_shape [%[[DIM0]], 1]
119122 // CHECK-NEXT: return %[[RES]]
@@ -140,7 +143,8 @@ func.func @matmul_to_vecmat_tensor(%arg0: tensor<1x?xf32>, %arg1: tensor<?x?xf32
140143 // CHECK-DAG: %[[C1:.*]] = arith.constant 1
141144 // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = tensor.collapse_shape %[[LHS]] {{\[}}[0, 1]]
142145 // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1]]
143- // CHECK-NEXT: %[[RESULT:.*]] = linalg.vecmat ins(%[[COLLAPSED_LHS]], %[[RHS]] : tensor<?xf32>, tensor<?x?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?xf32>)
146+ // CHECK-NEXT: %[[RESULT:.*]] = linalg.vecmat
147+ // CHECK-SAME: ins(%[[COLLAPSED_LHS]], %[[RHS]] : tensor<?xf32>, tensor<?x?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?xf32>)
144148 // CHECK-NEXT: %[[DIM1:.*]] = tensor.dim %[[INIT]], %[[C1]]
145149 // CHECK-NEXT: %[[RES:.*]] = tensor.expand_shape %[[RESULT]] {{\[}}[0, 1]] output_shape [1, %[[DIM1]]]
146150 // CHECK-NEXT: return %[[RES]]
0 commit comments