1313
1414#include " InstCombineInternal.h"
1515#include " llvm/ADT/APInt.h"
16- #include " llvm/ADT/SmallPtrSet.h"
1716#include " llvm/ADT/SmallVector.h"
1817#include " llvm/Analysis/InstructionSimplify.h"
1918#include " llvm/Analysis/ValueTracking.h"
@@ -658,94 +657,6 @@ Instruction *InstCombinerImpl::foldPowiReassoc(BinaryOperator &I) {
658657 return nullptr ;
659658}
660659
661- // If we have the following pattern,
662- // X = 1.0/sqrt(a)
663- // R1 = X * X
664- // R2 = a/sqrt(a)
665- // then this method collects all the instructions that match R1 and R2.
666- static bool getFSqrtDivOptPattern (Instruction *Div,
667- SmallPtrSetImpl<Instruction *> &R1,
668- SmallPtrSetImpl<Instruction *> &R2) {
669- Value *A;
670- if (match (Div, m_FDiv (m_FPOne (), m_Sqrt (m_Value (A)))) ||
671- match (Div, m_FDiv (m_SpecificFP (-1.0 ), m_Sqrt (m_Value (A))))) {
672- for (User *U : Div->users ()) {
673- Instruction *I = cast<Instruction>(U);
674- if (match (I, m_FMul (m_Specific (Div), m_Specific (Div))))
675- R1.insert (I);
676- }
677-
678- CallInst *CI = cast<CallInst>(Div->getOperand (1 ));
679- for (User *U : CI->users ()) {
680- Instruction *I = cast<Instruction>(U);
681- if (match (I, m_FDiv (m_Specific (A), m_Sqrt (m_Specific (A)))))
682- R2.insert (I);
683- }
684- }
685- return !R1.empty () && !R2.empty ();
686- }
687-
688- // Check legality for transforming
689- // x = 1.0/sqrt(a)
690- // r1 = x * x;
691- // r2 = a/sqrt(a);
692- //
693- // TO
694- //
695- // r1 = 1/a
696- // r2 = sqrt(a)
697- // x = r1 * r2
698- // This transform works only when 'a' is known positive.
699- static bool isFSqrtDivToFMulLegal (Instruction *X,
700- SmallPtrSetImpl<Instruction *> &R1,
701- SmallPtrSetImpl<Instruction *> &R2) {
702- // Check if the required pattern for the transformation exists.
703- if (!getFSqrtDivOptPattern (X, R1, R2))
704- return false ;
705-
706- BasicBlock *BBx = X->getParent ();
707- BasicBlock *BBr1 = (*R1.begin ())->getParent ();
708- BasicBlock *BBr2 = (*R2.begin ())->getParent ();
709-
710- CallInst *FSqrt = cast<CallInst>(X->getOperand (1 ));
711- if (!FSqrt->hasAllowReassoc () || !FSqrt->hasNoNaNs () ||
712- !FSqrt->hasNoSignedZeros () || !FSqrt->hasNoInfs ())
713- return false ;
714-
715- // We change x = 1/sqrt(a) to x = sqrt(a) * 1/a . This change isn't allowed
716- // by recip fp as it is strictly meant to transform ops of type a/b to
717- // a * 1/b. So, this can be considered as algebraic rewrite and reassoc flag
718- // has been used(rather abused)in the past for algebraic rewrites.
719- if (!X->hasAllowReassoc () || !X->hasAllowReciprocal () || !X->hasNoInfs ())
720- return false ;
721-
722- // Check the constraints on X, R1 and R2 combined.
723- // fdiv instruction and one of the multiplications must reside in the same
724- // block. If not, the optimized code may execute more ops than before and
725- // this may hamper the performance.
726- if (BBx != BBr1 && BBx != BBr2)
727- return false ;
728-
729- // Check the constraints on instructions in R1.
730- if (any_of (R1, [BBr1](Instruction *I) {
731- // When you have multiple instructions residing in R1 and R2
732- // respectively, it's difficult to generate combinations of (R1,R2) and
733- // then check if we have the required pattern. So, for now, just be
734- // conservative.
735- return (I->getParent () != BBr1 || !I->hasAllowReassoc ());
736- }))
737- return false ;
738-
739- // Check the constraints on instructions in R2.
740- return all_of (R2, [BBr2](Instruction *I) {
741- // When you have multiple instructions residing in R1 and R2
742- // respectively, it's difficult to generate combination of (R1,R2) and
743- // then check if we have the required pattern. So, for now, just be
744- // conservative.
745- return (I->getParent () == BBr2 && I->hasAllowReassoc ());
746- });
747- }
748-
749660Instruction *InstCombinerImpl::foldFMulReassoc (BinaryOperator &I) {
750661 Value *Op0 = I.getOperand (0 );
751662 Value *Op1 = I.getOperand (1 );
@@ -2002,75 +1913,6 @@ static Instruction *foldFDivSqrtDivisor(BinaryOperator &I,
20021913 return BinaryOperator::CreateFMulFMF (Op0, NewSqrt, &I);
20031914}
20041915
2005- // Change
2006- // X = 1/sqrt(a)
2007- // R1 = X * X
2008- // R2 = a * X
2009- //
2010- // TO
2011- //
2012- // FDiv = 1/a
2013- // FSqrt = sqrt(a)
2014- // FMul = FDiv * FSqrt
2015- // Replace Uses Of R1 With FDiv
2016- // Replace Uses Of R2 With FSqrt
2017- // Replace Uses Of X With FMul
2018- static Instruction *
2019- convertFSqrtDivIntoFMul (CallInst *CI, Instruction *X,
2020- const SmallPtrSetImpl<Instruction *> &R1,
2021- const SmallPtrSetImpl<Instruction *> &R2,
2022- InstCombiner::BuilderTy &B, InstCombinerImpl *IC) {
2023-
2024- B.SetInsertPoint (X);
2025-
2026- // Have an instruction that is representative of all of instructions in R1 and
2027- // get the most common fpmath metadata and fast-math flags on it.
2028- Value *SqrtOp = CI->getArgOperand (0 );
2029- auto *FDiv = cast<Instruction>(
2030- B.CreateFDiv (ConstantFP::get (X->getType (), 1.0 ), SqrtOp));
2031- auto *R1FPMathMDNode = (*R1.begin ())->getMetadata (LLVMContext::MD_fpmath);
2032- FastMathFlags R1FMF = (*R1.begin ())->getFastMathFlags (); // Common FMF
2033- for (Instruction *I : R1) {
2034- R1FPMathMDNode = MDNode::getMostGenericFPMath (
2035- R1FPMathMDNode, I->getMetadata (LLVMContext::MD_fpmath));
2036- R1FMF &= I->getFastMathFlags ();
2037- IC->replaceInstUsesWith (*I, FDiv);
2038- IC->eraseInstFromFunction (*I);
2039- }
2040- FDiv->setMetadata (LLVMContext::MD_fpmath, R1FPMathMDNode);
2041- FDiv->copyFastMathFlags (R1FMF);
2042-
2043- // Have a single sqrt call instruction that is representative of all of
2044- // instructions in R2 and get the most common fpmath metadata and fast-math
2045- // flags on it.
2046- auto *FSqrt = cast<CallInst>(CI->clone ());
2047- FSqrt->insertBefore (CI);
2048- auto *R2FPMathMDNode = (*R2.begin ())->getMetadata (LLVMContext::MD_fpmath);
2049- FastMathFlags R2FMF = (*R2.begin ())->getFastMathFlags (); // Common FMF
2050- for (Instruction *I : R2) {
2051- R2FPMathMDNode = MDNode::getMostGenericFPMath (
2052- R2FPMathMDNode, I->getMetadata (LLVMContext::MD_fpmath));
2053- R2FMF &= I->getFastMathFlags ();
2054- IC->replaceInstUsesWith (*I, FSqrt);
2055- IC->eraseInstFromFunction (*I);
2056- }
2057- FSqrt->setMetadata (LLVMContext::MD_fpmath, R2FPMathMDNode);
2058- FSqrt->copyFastMathFlags (R2FMF);
2059-
2060- Instruction *FMul;
2061- // If X = -1/sqrt(a) initially,then FMul = -(FDiv * FSqrt)
2062- if (match (X, m_FDiv (m_SpecificFP (-1.0 ), m_Specific (CI)))) {
2063- Value *Mul = B.CreateFMul (FDiv, FSqrt);
2064- FMul = cast<Instruction>(B.CreateFNeg (Mul));
2065- } else
2066- FMul = cast<Instruction>(B.CreateFMul (FDiv, FSqrt));
2067- FMul->copyMetadata (*X);
2068- FMul->copyFastMathFlags (FastMathFlags::intersectRewrite (R1FMF, R2FMF) |
2069- FastMathFlags::unionValue (R1FMF, R2FMF));
2070- IC->replaceInstUsesWith (*X, FMul);
2071- return IC->eraseInstFromFunction (*X);
2072- }
2073-
20741916Instruction *InstCombinerImpl::visitFDiv (BinaryOperator &I) {
20751917 Module *M = I.getModule ();
20761918
@@ -2095,24 +1937,6 @@ Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
20951937 return R;
20961938
20971939 Value *Op0 = I.getOperand (0 ), *Op1 = I.getOperand (1 );
2098-
2099- // Convert
2100- // x = 1.0/sqrt(a)
2101- // r1 = x * x;
2102- // r2 = a/sqrt(a);
2103- //
2104- // TO
2105- //
2106- // r1 = 1/a
2107- // r2 = sqrt(a)
2108- // x = r1 * r2
2109- SmallPtrSet<Instruction *, 2 > R1, R2;
2110- if (isFSqrtDivToFMulLegal (&I, R1, R2)) {
2111- CallInst *CI = cast<CallInst>(I.getOperand (1 ));
2112- if (Instruction *D = convertFSqrtDivIntoFMul (CI, &I, R1, R2, Builder, this ))
2113- return D;
2114- }
2115-
21161940 if (isa<Constant>(Op0))
21171941 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
21181942 if (Instruction *R = FoldOpIntoSelect (I, SI))
0 commit comments