99// CHECK-SAME: ins(%[[A]] : tensor<16x8x32xf32>) outs(%[[B]] : tensor<8x16x32xf32>) -> tensor<8x16x32xf32>
1010// CHECK-NEXT: return %[[RES]] : tensor<8x16x32xf32>
1111//
12- func.func @unary_transpose (%A : tensor <16 x8 x32 xf32 >, %B: tensor <8 x16 x32 xf32 >) -> tensor <8 x16 x32 xf32 > {
12+ func.func @unary_transpose (%A: tensor <16 x8 x32 xf32 >, %B: tensor <8 x16 x32 xf32 >) -> tensor <8 x16 x32 xf32 > {
1313 %empty = tensor.empty () : tensor <8 x16 x32 xf32 >
14- %transposed_A = linalg.transpose ins (%A : tensor <16 x8 x32 xf32 >) outs (%empty : tensor <8 x16 x32 xf32 >) permutation = [1 , 0 , 2 ]
14+ %transposed_A = linalg.transpose ins (%A : tensor <16 x8 x32 xf32 >) outs (%empty : tensor <8 x16 x32 xf32 >) permutation = [1 , 0 , 2 ]
1515 %result = linalg.elementwise kind =#linalg.elementwise_kind <exp >
16- ins (%transposed_A : tensor <8 x16 x32 xf32 >) outs (%B: tensor <8 x16 x32 xf32 >) -> tensor <8 x16 x32 xf32 >
16+ ins (%transposed_A : tensor <8 x16 x32 xf32 >) outs (%B : tensor <8 x16 x32 xf32 >) -> tensor <8 x16 x32 xf32 >
1717 return %result : tensor <8 x16 x32 xf32 >
1818}
1919
@@ -28,16 +28,164 @@ func.func @unary_transpose(%A : tensor<16x8x32xf32>, %B: tensor<8x16x32xf32>) ->
2828// CHECK-SAME: ins(%[[A]], %[[B]] : tensor<?x?xf32>, tensor<?x?xf32>) outs(%[[C]] : tensor<?x?xf32>) -> tensor<?x?xf32>
2929// CHECK-NEXT: return %[[RES]] : tensor<?x?xf32>
3030//
31- func.func @binary_transposed (%A : tensor <?x?xf32 >, %B: tensor <?x?xf32 >, %C: tensor <?x?xf32 >) -> tensor <?x?xf32 > {
31+ func.func @binary_transposed (%A: tensor <?x?xf32 >, %B: tensor <?x?xf32 >, %C: tensor <?x?xf32 >) -> tensor <?x?xf32 > {
3232 %c0 = arith.constant 0 : index
3333 %c1 = arith.constant 1 : index
3434 %dim0 = tensor.dim %A , %c0 : tensor <?x?xf32 >
3535 %dim1 = tensor.dim %A , %c1 : tensor <?x?xf32 >
3636
3737 %empty = tensor.empty (%dim1 , %dim0 ) : tensor <?x?xf32 >
38- %transposed_B = linalg.transpose ins (%B : tensor <?x?xf32 >) outs (%empty : tensor <?x?xf32 >) permutation = [1 , 0 ]
38+ %transposed_B = linalg.transpose ins (%B : tensor <?x?xf32 >) outs (%empty : tensor <?x?xf32 >) permutation = [1 , 0 ]
3939 %result = linalg.elementwise kind =#linalg.elementwise_kind <add >
40- ins (%A , %transposed_B : tensor <?x?xf32 >, tensor <?x?xf32 >)
41- outs (%C: tensor <?x?xf32 >) -> tensor <?x?xf32 >
40+ ins (%A , %transposed_B : tensor <?x?xf32 >, tensor <?x?xf32 >)
41+ outs (%C : tensor <?x?xf32 >) -> tensor <?x?xf32 >
4242 return %result : tensor <?x?xf32 >
4343}
44+
45+ // -----
46+
47+ // CHECK-DAG: #[[IDENTITY:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
48+ // CHECK-DAG: #[[BROADCASTED:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)>
49+ //
50+ // CHECK: func.func @unary_broadcasted(%[[A:.+]]: tensor<8x32xf32>, %[[B:.+]]: tensor<8x16x32xf32>) -> tensor<8x16x32xf32> {
51+ // CHECK-NEXT: %[[RES:.+]] = linalg.elementwise kind=#linalg.elementwise_kind<exp>
52+ // CHECK-SAME: indexing_maps = [#[[BROADCASTED]], #[[IDENTITY]]]
53+ // CHECK-SAME: ins(%[[A]] : tensor<8x32xf32>) outs(%[[B]] : tensor<8x16x32xf32>) -> tensor<8x16x32xf32>
54+ // CHECK-NEXT: return %[[RES]] : tensor<8x16x32xf32>
55+ //
56+ func.func @unary_broadcasted (%A: tensor <8 x32 xf32 >, %B: tensor <8 x16 x32 xf32 >) -> tensor <8 x16 x32 xf32 > {
57+ %empty = tensor.empty () : tensor <8 x16 x32 xf32 >
58+ %broadcasted_A = linalg.broadcast ins (%A : tensor <8 x32 xf32 >) outs (%empty : tensor <8 x16 x32 xf32 >) dimensions = [1 ]
59+ %result = linalg.elementwise kind =#linalg.elementwise_kind <exp >
60+ ins (%broadcasted_A : tensor <8 x16 x32 xf32 >) outs (%B : tensor <8 x16 x32 xf32 >) -> tensor <8 x16 x32 xf32 >
61+ return %result : tensor <8 x16 x32 xf32 >
62+ }
63+
64+ // -----
65+
66+ // CHECK-DAG: #[[IDENTITY:.+]] = affine_map<(d0, d1) -> (d0, d1)>
67+ // CHECK-DAG: #[[BROADCASTED:.+]] = affine_map<(d0, d1) -> (d0)>
68+ //
69+ // CHECK: func.func @binary_broadcasted(%[[A:.+]]: tensor<?x?xf32>, %[[B:.+]]: tensor<?xf32>, %[[C:.+]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
70+ // CHECK-NEXT: %[[RES:.+]] = linalg.elementwise kind=#linalg.elementwise_kind<add>
71+ // CHECK-SAME: indexing_maps = [#[[IDENTITY]], #[[BROADCASTED]], #[[IDENTITY]]]
72+ // CHECK-SAME: ins(%[[A]], %[[B]] : tensor<?x?xf32>, tensor<?xf32>) outs(%[[C]] : tensor<?x?xf32>) -> tensor<?x?xf32>
73+ // CHECK-NEXT: return %[[RES]] : tensor<?x?xf32>
74+ //
75+ func.func @binary_broadcasted (%A: tensor <?x?xf32 >, %B: tensor <?xf32 >, %C: tensor <?x?xf32 >) -> tensor <?x?xf32 > {
76+ %c0 = arith.constant 0 : index
77+ %c1 = arith.constant 1 : index
78+ %dim0 = tensor.dim %A , %c0 : tensor <?x?xf32 >
79+ %dim1 = tensor.dim %A , %c1 : tensor <?x?xf32 >
80+
81+ %empty = tensor.empty (%dim1 , %dim0 ) : tensor <?x?xf32 >
82+ %broadcasted_B = linalg.broadcast ins (%B : tensor <?xf32 >) outs (%empty : tensor <?x?xf32 >) dimensions = [1 ]
83+ %result = linalg.elementwise kind =#linalg.elementwise_kind <add >
84+ ins (%A , %broadcasted_B : tensor <?x?xf32 >, tensor <?x?xf32 >)
85+ outs (%C : tensor <?x?xf32 >) -> tensor <?x?xf32 >
86+ return %result : tensor <?x?xf32 >
87+ }
88+
89+ // -----
90+
91+ // CHECK-DAG: #[[IDENTITY:.+]] = affine_map<(d0, d1) -> (d0, d1)>
92+ // CHECK-DAG: #[[COMPOSED_MAP:.+]] = affine_map<(d0, d1) -> (d0)>
93+ //
94+ // CHECK: func.func @fold_broadcast_after_transpose_fold(%[[A:.+]]: tensor<16xf32>, %[[B:.+]]: tensor<16x32xf32>) -> tensor<16x32xf32> {
95+ // CHECK-NEXT: %[[RES:.+]] = linalg.elementwise kind=#linalg.elementwise_kind<exp>
96+ // CHECK-SAME: indexing_maps = [#[[COMPOSED_MAP]], #[[IDENTITY]]]
97+ // CHECK-SAME: ins(%[[A]] : tensor<16xf32>) outs(%[[B]] : tensor<16x32xf32>) -> tensor<16x32xf32>
98+ // CHECK-NEXT: return %[[RES]] : tensor<16x32xf32>
99+ //
100+ func.func @fold_broadcast_after_transpose_fold (%A: tensor <16 xf32 >, %B: tensor <16 x32 xf32 >) -> tensor <16 x32 xf32 > {
101+ %empty_b = tensor.empty () : tensor <32 x16 xf32 >
102+ %broadcasted_A = linalg.broadcast ins (%A : tensor <16 xf32 >) outs (%empty_b : tensor <32 x16 xf32 >) dimensions = [0 ]
103+
104+ %empty_t = tensor.empty () : tensor <16 x32 xf32 >
105+ %transposed_A = linalg.transpose ins (%broadcasted_A : tensor <32 x16 xf32 >) outs (%empty_t : tensor <16 x32 xf32 >) permutation = [1 , 0 ]
106+
107+ %result = linalg.elementwise kind =#linalg.elementwise_kind <exp >
108+ ins (%transposed_A : tensor <16 x32 xf32 >) outs (%B : tensor <16 x32 xf32 >) -> tensor <16 x32 xf32 >
109+ return %result : tensor <16 x32 xf32 >
110+ }
111+
112+ // -----
113+
114+ // CHECK-DAG: #[[IDENTITY:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
115+ // CHECK-DAG: #[[COMPOSED_MAP:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
116+ //
117+ // CHECK: func.func @fold_transpose_after_broadcast_fold(%[[A:.+]]: tensor<32x16xf32>, %[[B:.+]]: tensor<8x16x32xf32>) -> tensor<8x16x32xf32> {
118+ // CHECK-NEXT: %[[RES:.+]] = linalg.elementwise kind=#linalg.elementwise_kind<exp>
119+ // CHECK-SAME: indexing_maps = [#[[COMPOSED_MAP]], #[[IDENTITY]]]
120+ // CHECK-SAME: ins(%[[A]] : tensor<32x16xf32>) outs(%[[B]] : tensor<8x16x32xf32>) -> tensor<8x16x32xf32>
121+ // CHECK-NEXT: return %[[RES]] : tensor<8x16x32xf32>
122+ //
123+ func.func @fold_transpose_after_broadcast_fold (%A: tensor <32 x16 xf32 >, %B: tensor <8 x16 x32 xf32 >) -> tensor <8 x16 x32 xf32 > {
124+ %empty_t = tensor.empty () : tensor <16 x32 xf32 >
125+ %transposed_A = linalg.transpose ins (%A : tensor <32 x16 xf32 >) outs (%empty_t : tensor <16 x32 xf32 >) permutation = [1 , 0 ]
126+
127+ %empty_b = tensor.empty () : tensor <8 x16 x32 xf32 >
128+ %broadcasted_A = linalg.broadcast ins (%transposed_A : tensor <16 x32 xf32 >) outs (%empty_b : tensor <8 x16 x32 xf32 >) dimensions = [0 ]
129+
130+ %result = linalg.elementwise kind =#linalg.elementwise_kind <exp >
131+ ins (%broadcasted_A : tensor <8 x16 x32 xf32 >) outs (%B : tensor <8 x16 x32 xf32 >) -> tensor <8 x16 x32 xf32 >
132+ return %result : tensor <8 x16 x32 xf32 >
133+ }
134+
135+ // -----
136+
137+ // CHECK-DAG: #[[IDENTITY:.+]] = affine_map<(d0, d1) -> (d0, d1)>
138+ // CHECK-DAG: #[[COMPOSED_MAP:.+]] = affine_map<(d0, d1) -> (d0)>
139+ //
140+ // CHECK: func.func @fold_broadcast_after_transpose_fold_binary(%[[A:.+]]: tensor<?xf32>, %[[B:.+]]: tensor<?x?xf32>, %[[C:.+]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
141+ // CHECK-NEXT: %[[RES:.+]] = linalg.elementwise kind=#linalg.elementwise_kind<add>
142+ // CHECK-SAME: indexing_maps = [#[[COMPOSED_MAP]], #[[IDENTITY]], #[[IDENTITY]]]
143+ // CHECK-SAME: ins(%[[A]], %[[B]] : tensor<?xf32>, tensor<?x?xf32>) outs(%[[C]] : tensor<?x?xf32>) -> tensor<?x?xf32>
144+ // CHECK-NEXT: return %[[RES]] : tensor<?x?xf32>
145+ //
146+ func.func @fold_broadcast_after_transpose_fold_binary (%A: tensor <?xf32 >, %B: tensor <?x?xf32 >, %C: tensor <?x?xf32 >) -> tensor <?x?xf32 > {
147+ %c0 = arith.constant 0 : index
148+ %c1 = arith.constant 1 : index
149+ %dim0 = tensor.dim %B , %c0 : tensor <?x?xf32 >
150+ %dim1 = tensor.dim %B , %c1 : tensor <?x?xf32 >
151+
152+ %empty_b = tensor.empty (%dim1 , %dim0 ) : tensor <?x?xf32 >
153+ %broadcasted_A = linalg.broadcast ins (%A : tensor <?xf32 >) outs (%empty_b : tensor <?x?xf32 >) dimensions = [0 ]
154+
155+ %empty_t = tensor.empty (%dim0 , %dim1 ) : tensor <?x?xf32 >
156+ %transposed_A = linalg.transpose ins (%broadcasted_A : tensor <?x?xf32 >) outs (%empty_t : tensor <?x?xf32 >) permutation = [1 , 0 ]
157+
158+ %result = linalg.elementwise kind =#linalg.elementwise_kind <add >
159+ ins (%transposed_A , %B : tensor <?x?xf32 >, tensor <?x?xf32 >) outs (%C : tensor <?x?xf32 >) -> tensor <?x?xf32 >
160+ return %result : tensor <?x?xf32 >
161+ }
162+
163+ // -----
164+
165+ // CHECK-DAG: #[[IDENTITY:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
166+ // CHECK-DAG: #[[COMPOSED_MAP:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
167+ //
168+ // CHECK: func.func @fold_transpose_after_broadcast_fold_binary(%[[A:.+]]: tensor<?x?xf32>, %[[B:.+]]: tensor<?x?x?xf32>, %[[C:.+]]: tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
169+ // CHECK-NEXT: %[[RES:.+]] = linalg.elementwise kind=#linalg.elementwise_kind<add>
170+ // CHECK-SAME: indexing_maps = [#[[COMPOSED_MAP]], #[[IDENTITY]], #[[IDENTITY]]]
171+ // CHECK-SAME: ins(%[[A]], %[[B]] : tensor<?x?xf32>, tensor<?x?x?xf32>) outs(%[[C]] : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
172+ // CHECK-NEXT: return %[[RES]] : tensor<?x?x?xf32>
173+ //
174+ func.func @fold_transpose_after_broadcast_fold_binary (%A: tensor <?x?xf32 >, %B: tensor <?x?x?xf32 >, %C: tensor <?x?x?xf32 >) -> tensor <?x?x?xf32 > {
175+ %c0 = arith.constant 0 : index
176+ %c1 = arith.constant 1 : index
177+ %c2 = arith.constant 2 : index
178+ %dim0 = tensor.dim %B , %c0 : tensor <?x?x?xf32 >
179+ %dim1 = tensor.dim %B , %c1 : tensor <?x?x?xf32 >
180+ %dim2 = tensor.dim %B , %c2 : tensor <?x?x?xf32 >
181+
182+ %empty_t = tensor.empty (%dim1 , %dim2 ) : tensor <?x?xf32 >
183+ %transposed_A = linalg.transpose ins (%A : tensor <?x?xf32 >) outs (%empty_t : tensor <?x?xf32 >) permutation = [1 , 0 ]
184+
185+ %empty_b = tensor.empty (%dim0 , %dim1 , %dim2 ) : tensor <?x?x?xf32 >
186+ %broadcasted_A = linalg.broadcast ins (%transposed_A : tensor <?x?xf32 >) outs (%empty_b : tensor <?x?x?xf32 >) dimensions = [0 ]
187+
188+ %result = linalg.elementwise kind =#linalg.elementwise_kind <add >
189+ ins (%broadcasted_A , %B : tensor <?x?x?xf32 >, tensor <?x?x?xf32 >) outs (%C : tensor <?x?x?xf32 >) -> tensor <?x?x?xf32 >
190+ return %result : tensor <?x?x?xf32 >
191+ }
0 commit comments