@@ -307,7 +307,7 @@ def XeGPU_LoadNdOp : XeGPU_Op<"load_nd", [
307307 same time.
308308
309309 In SIMT mode, LoadNdOp expects the tensor descriptor to be augmented with `SGMapAttr`
310- which describes the mapping of the tensor to the work items. In this case, input
310+ which describes the mapping of the tensor to the work items. In this case, result
311311 vector represents the data to be loaded by each work-item.
312312
313313 Example 1:
@@ -483,7 +483,7 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
483483
484484 In SIMT mode, similar to `create_nd_tdesc` the resulting tensor descriptor is augmented
485485 with `SGMapAttr` which describes the mapping of the tensor descriptor to the work items.
486- In this case, first dimension of the tensor descriptor represents the work-items, and
486+ In this case, the first dimension of the tensor descriptor represents the work-items, and
487487 the second dimension represents the chunk size.
488488
489489 Example 1: It assumes subgroup size is 4, and accesses a[0], a[16], a[32], a[64]
@@ -624,7 +624,7 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [
624624 addresses/offsets as long as they are masked. It applies to slots of SIMD lanes.
625625
626626 In SIMT mode, LoadGatherOp expects the tensor descriptor to be augmented with `SGMapAttr`
627- which describes the mapping of the tensor to the work items. In this case, input vector
627+ which describes the mapping of the tensor to the work items. In this case, result vector
628628 represents the data to be loaded by each work-item. Each work-item recieves a `chunk_size`
629629 number of elements.
630630
@@ -711,23 +711,23 @@ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [
711711
712712 Example 1:
713713 ```mlir
714- %3 = xegpu.store %0, %1, %2 {l1_hint = #xegpu.cache_hint<uncached>,
714+ xegpu.store %0, %1, %2 {l1_hint = #xegpu.cache_hint<uncached>,
715715 l2_hint = #xegpu.cache_hint<write_back>,
716716 l3_hint = #xegpu.cache_hint<write_through>}
717717 : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.scattered_tdesc_attr<>>, vector<16xi1>
718718 ```
719719
720720 Example 2:
721721 ```mlir
722- %3 = xegpu.store %0, %1, %2 {transpose,
722+ xegpu.store %0, %1, %2 {transpose,
723723 l1_hint = #xegpu.cache_hint<uncached>,
724724 l2_hint = #xegpu.cache_hint<write_back>,
725725 l3_hint = #xegpu.cache_hint<write_through>}
726726 : vector<8x16xf32>, !xegpu.tensor_desc<16x8xf32, #xegpu.scattered_tdesc_attr<chunk_size=8>>, vector<16xi1>
727727 ```
728728 Example 3 (SIMT mode):
729729 ```mlir
730- %3 = xegpu.store %0, %1, %2 {transpose,
730+ xegpu.store %0, %1, %2 {transpose,
731731 l1_hint = #xegpu.cache_hint<uncached>,
732732 l2_hint = #xegpu.cache_hint<write_back>,
733733 l3_hint = #xegpu.cache_hint<write_through>}
0 commit comments