Skip to content

Commit 884ab2b

Browse files
committed
[SCEV] Improve handling of divisibility information from loop guards.
At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus.
1 parent 385ea0d commit 884ab2b

File tree

2 files changed

+117
-75
lines changed

2 files changed

+117
-75
lines changed

llvm/lib/Analysis/ScalarEvolution.cpp

Lines changed: 115 additions & 72 deletions
Original file line numberDiff line numberDiff line change
@@ -15505,6 +15505,79 @@ static const SCEV *getNextSCEVDivisibleByDivisor(const SCEV *Expr,
1550515505
return SE.getConstant(*ExprVal + DivisorVal - Rem);
1550615506
}
1550715507

15508+
static bool collectDivisibilityInformation(
15509+
ICmpInst::Predicate Predicate, const SCEV *LHS, const SCEV *RHS,
15510+
DenseMap<const SCEV *, const SCEV *> &DivInfo,
15511+
DenseMap<const SCEV *, APInt> &Multiples, ScalarEvolution &SE) {
15512+
// If we have LHS == 0, check if LHS is computing a property of some unknown
15513+
// SCEV %v which we can rewrite %v to express explicitly.
15514+
if (Predicate != CmpInst::ICMP_EQ || !match(RHS, m_scev_Zero()))
15515+
return false;
15516+
// If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
15517+
// explicitly express that.
15518+
const SCEVUnknown *URemLHS = nullptr;
15519+
const SCEV *URemRHS = nullptr;
15520+
if (!match(LHS, m_scev_URem(m_SCEVUnknown(URemLHS), m_SCEV(URemRHS), SE)))
15521+
return false;
15522+
15523+
const SCEV *Multiple =
15524+
SE.getMulExpr(SE.getUDivExpr(URemLHS, URemRHS), URemRHS);
15525+
DivInfo[URemLHS] = Multiple;
15526+
Multiples[URemLHS] = cast<SCEVConstant>(URemRHS)->getAPInt();
15527+
return true;
15528+
}
15529+
15530+
// Check if the condition is a divisibility guard (A % B == 0).
15531+
static bool isDivisibilityGuard(const SCEV *LHS, const SCEV *RHS,
15532+
ScalarEvolution &SE) {
15533+
const SCEV *X, *Y;
15534+
return match(LHS, m_scev_URem(m_SCEV(X), m_SCEV(Y), SE)) && RHS->isZero();
15535+
}
15536+
15537+
// Apply divisibility by \p Divisor on MinMaxExpr with constant values,
15538+
// recursively. This is done by aligning up/down the constant value to the
15539+
// Divisor.
15540+
static const SCEV *applyDivisibilityOnMinMaxExpr(const SCEV *MinMaxExpr,
15541+
const SCEV *Divisor,
15542+
ScalarEvolution &SE) {
15543+
// Return true if \p Expr is a MinMax SCEV expression with a non-negative
15544+
// constant operand. If so, return in \p SCTy the SCEV type and in \p RHS
15545+
// the non-constant operand and in \p LHS the constant operand.
15546+
auto IsMinMaxSCEVWithNonNegativeConstant =
15547+
[&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS,
15548+
const SCEV *&RHS) {
15549+
if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) {
15550+
if (MinMax->getNumOperands() != 2)
15551+
return false;
15552+
if (auto *C = dyn_cast<SCEVConstant>(MinMax->getOperand(0))) {
15553+
if (C->getAPInt().isNegative())
15554+
return false;
15555+
SCTy = MinMax->getSCEVType();
15556+
LHS = MinMax->getOperand(0);
15557+
RHS = MinMax->getOperand(1);
15558+
return true;
15559+
}
15560+
}
15561+
return false;
15562+
};
15563+
15564+
const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr;
15565+
SCEVTypes SCTy;
15566+
if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS,
15567+
MinMaxRHS))
15568+
return MinMaxExpr;
15569+
auto IsMin = isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr);
15570+
assert(SE.isKnownNonNegative(MinMaxLHS) && "Expected non-negative operand!");
15571+
auto *DivisibleExpr =
15572+
IsMin ? getPreviousSCEVDivisibleByDivisor(
15573+
MinMaxLHS, cast<SCEVConstant>(Divisor)->getAPInt(), SE)
15574+
: getNextSCEVDivisibleByDivisor(
15575+
MinMaxLHS, cast<SCEVConstant>(Divisor)->getAPInt(), SE);
15576+
SmallVector<const SCEV *> Ops = {
15577+
applyDivisibilityOnMinMaxExpr(MinMaxRHS, Divisor, SE), DivisibleExpr};
15578+
return SE.getMinMaxExpr(SCTy, Ops);
15579+
}
15580+
1550815581
void ScalarEvolution::LoopGuards::collectFromBlock(
1550915582
ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards,
1551015583
const BasicBlock *Block, const BasicBlock *Pred,
@@ -15515,19 +15588,14 @@ void ScalarEvolution::LoopGuards::collectFromBlock(
1551515588
SmallVector<const SCEV *> ExprsToRewrite;
1551615589
auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
1551715590
const SCEV *RHS,
15518-
DenseMap<const SCEV *, const SCEV *>
15519-
&RewriteMap) {
15591+
DenseMap<const SCEV *, const SCEV *> &RewriteMap,
15592+
const DenseMap<const SCEV *, const SCEV *>
15593+
&DivInfo) {
1552015594
// WARNING: It is generally unsound to apply any wrap flags to the proposed
1552115595
// replacement SCEV which isn't directly implied by the structure of that
1552215596
// SCEV. In particular, using contextual facts to imply flags is *NOT*
1552315597
// legal. See the scoping rules for flags in the header to understand why.
1552415598

15525-
// If LHS is a constant, apply information to the other expression.
15526-
if (isa<SCEVConstant>(LHS)) {
15527-
std::swap(LHS, RHS);
15528-
Predicate = CmpInst::getSwappedPredicate(Predicate);
15529-
}
15530-
1553115599
// Check for a condition of the form (-C1 + X < C2). InstCombine will
1553215600
// create this form when combining two checks of the form (X u< C2 + C1) and
1553315601
// (X >=u C1).
@@ -15560,67 +15628,6 @@ void ScalarEvolution::LoopGuards::collectFromBlock(
1556015628
if (MatchRangeCheckIdiom())
1556115629
return;
1556215630

15563-
// Return true if \p Expr is a MinMax SCEV expression with a non-negative
15564-
// constant operand. If so, return in \p SCTy the SCEV type and in \p RHS
15565-
// the non-constant operand and in \p LHS the constant operand.
15566-
auto IsMinMaxSCEVWithNonNegativeConstant =
15567-
[&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS,
15568-
const SCEV *&RHS) {
15569-
const APInt *C;
15570-
SCTy = Expr->getSCEVType();
15571-
return match(Expr, m_scev_MinMax(m_SCEV(LHS), m_SCEV(RHS))) &&
15572-
match(LHS, m_scev_APInt(C)) && C->isNonNegative();
15573-
};
15574-
15575-
// Apply divisibilty by \p Divisor on MinMaxExpr with constant values,
15576-
// recursively. This is done by aligning up/down the constant value to the
15577-
// Divisor.
15578-
std::function<const SCEV *(const SCEV *, const SCEV *)>
15579-
ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr,
15580-
const SCEV *Divisor) {
15581-
auto *ConstDivisor = dyn_cast<SCEVConstant>(Divisor);
15582-
if (!ConstDivisor)
15583-
return MinMaxExpr;
15584-
const APInt &DivisorVal = ConstDivisor->getAPInt();
15585-
15586-
const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr;
15587-
SCEVTypes SCTy;
15588-
if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS,
15589-
MinMaxRHS))
15590-
return MinMaxExpr;
15591-
auto IsMin =
15592-
isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr);
15593-
assert(SE.isKnownNonNegative(MinMaxLHS) &&
15594-
"Expected non-negative operand!");
15595-
auto *DivisibleExpr =
15596-
IsMin
15597-
? getPreviousSCEVDivisibleByDivisor(MinMaxLHS, DivisorVal, SE)
15598-
: getNextSCEVDivisibleByDivisor(MinMaxLHS, DivisorVal, SE);
15599-
SmallVector<const SCEV *> Ops = {
15600-
ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr};
15601-
return SE.getMinMaxExpr(SCTy, Ops);
15602-
};
15603-
15604-
// If we have LHS == 0, check if LHS is computing a property of some unknown
15605-
// SCEV %v which we can rewrite %v to express explicitly.
15606-
if (Predicate == CmpInst::ICMP_EQ && match(RHS, m_scev_Zero())) {
15607-
// If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
15608-
// explicitly express that.
15609-
const SCEVUnknown *URemLHS = nullptr;
15610-
const SCEV *URemRHS = nullptr;
15611-
if (match(LHS,
15612-
m_scev_URem(m_SCEVUnknown(URemLHS), m_SCEV(URemRHS), SE))) {
15613-
auto I = RewriteMap.find(URemLHS);
15614-
const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : URemLHS;
15615-
RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS);
15616-
const auto *Multiple =
15617-
SE.getMulExpr(SE.getUDivExpr(RewrittenLHS, URemRHS), URemRHS);
15618-
RewriteMap[URemLHS] = Multiple;
15619-
ExprsToRewrite.push_back(URemLHS);
15620-
return;
15621-
}
15622-
}
15623-
1562415631
// Do not apply information for constants or if RHS contains an AddRec.
1562515632
if (isa<SCEVConstant>(LHS) || SE.containsAddRecurrence(RHS))
1562615633
return;
@@ -15650,7 +15657,11 @@ void ScalarEvolution::LoopGuards::collectFromBlock(
1565015657
};
1565115658

1565215659
const SCEV *RewrittenLHS = GetMaybeRewritten(LHS);
15653-
const APInt &DividesBy = SE.getConstantMultiple(RewrittenLHS);
15660+
// Apply divisibility information when computing the constant multiple.
15661+
LoopGuards DivGuards(SE);
15662+
DivGuards.RewriteMap = DivInfo;
15663+
const APInt &DividesBy =
15664+
SE.getConstantMultiple(DivGuards.rewrite(RewrittenLHS));
1565415665

1565515666
// Collect rewrites for LHS and its transitive operands based on the
1565615667
// condition.
@@ -15835,8 +15846,11 @@ void ScalarEvolution::LoopGuards::collectFromBlock(
1583515846

1583615847
// Now apply the information from the collected conditions to
1583715848
// Guards.RewriteMap. Conditions are processed in reverse order, so the
15838-
// earliest conditions is processed first. This ensures the SCEVs with the
15849+
// earliest conditions is processed first, except guards with divisibility
15850+
// information, which are moved to the back. This ensures the SCEVs with the
1583915851
// shortest dependency chains are constructed first.
15852+
SmallVector<std::tuple<CmpInst::Predicate, const SCEV *, const SCEV *>>
15853+
GuardsToProcess;
1584015854
for (auto [Term, EnterIfTrue] : reverse(Terms)) {
1584115855
SmallVector<Value *, 8> Worklist;
1584215856
SmallPtrSet<Value *, 8> Visited;
@@ -15851,7 +15865,12 @@ void ScalarEvolution::LoopGuards::collectFromBlock(
1585115865
EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
1585215866
const auto *LHS = SE.getSCEV(Cmp->getOperand(0));
1585315867
const auto *RHS = SE.getSCEV(Cmp->getOperand(1));
15854-
CollectCondition(Predicate, LHS, RHS, Guards.RewriteMap);
15868+
// If LHS is a constant, apply information to the other expression.
15869+
if (isa<SCEVConstant>(LHS)) {
15870+
std::swap(LHS, RHS);
15871+
Predicate = CmpInst::getSwappedPredicate(Predicate);
15872+
}
15873+
GuardsToProcess.emplace_back(Predicate, LHS, RHS);
1585515874
continue;
1585615875
}
1585715876

@@ -15864,6 +15883,30 @@ void ScalarEvolution::LoopGuards::collectFromBlock(
1586415883
}
1586515884
}
1586615885

15886+
// Process divisibility guards in reverse order to populate DivInfo early.
15887+
DenseMap<const SCEV *, APInt> Multiples;
15888+
DenseMap<const SCEV *, const SCEV *> DivInfo;
15889+
for (const auto &[Predicate, LHS, RHS] : GuardsToProcess) {
15890+
if (!isDivisibilityGuard(LHS, RHS, SE))
15891+
continue;
15892+
collectDivisibilityInformation(Predicate, LHS, RHS, DivInfo, Multiples, SE);
15893+
}
15894+
15895+
for (const auto &[Predicate, LHS, RHS] : GuardsToProcess)
15896+
CollectCondition(Predicate, LHS, RHS, Guards.RewriteMap, DivInfo);
15897+
15898+
// Apply divisibility information last. This ensures it is applied to the
15899+
// outermost expression after other rewrites for the given value.
15900+
for (const auto &[K, V] : Multiples) {
15901+
const SCEV *DivisorSCEV = SE.getConstant(V);
15902+
Guards.RewriteMap[K] =
15903+
SE.getMulExpr(SE.getUDivExpr(applyDivisibilityOnMinMaxExpr(
15904+
Guards.rewrite(K), DivisorSCEV, SE),
15905+
DivisorSCEV),
15906+
DivisorSCEV);
15907+
ExprsToRewrite.push_back(K);
15908+
}
15909+
1586715910
// Let the rewriter preserve NUW/NSW flags if the unsigned/signed ranges of
1586815911
// the replacement expressions are contained in the ranges of the replaced
1586915912
// expressions.

llvm/test/Transforms/IndVarSimplify/loop-guard-order.ll

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -114,7 +114,7 @@ define i32 @urem_order1(i32 %n) {
114114
; CHECK: [[LOOP]]:
115115
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ [[IV_NEXT:%.*]], %[[LOOP]] ], [ 0, %[[LOOP_PREHEADER]] ]
116116
; CHECK-NEXT: call void @foo()
117-
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], 3
117+
; CHECK-NEXT: [[IV_NEXT]] = add nuw i32 [[IV]], 3
118118
; CHECK-NEXT: [[EC:%.*]] = icmp eq i32 [[IV_NEXT]], [[N]]
119119
; CHECK-NEXT: br i1 [[EC]], label %[[EXIT_LOOPEXIT:.*]], label %[[LOOP]]
120120
; CHECK: [[EXIT_LOOPEXIT]]:
@@ -205,13 +205,12 @@ define i64 @test_loop_with_div_order_1(i64 %n) {
205205
; CHECK-NEXT: [[PARITY_CHECK:%.*]] = icmp eq i64 [[IS_ODD]], 0
206206
; CHECK-NEXT: br i1 [[PARITY_CHECK]], label %[[LOOP_PREHEADER:.*]], label %[[EXIT]]
207207
; CHECK: [[LOOP_PREHEADER]]:
208-
; CHECK-NEXT: [[UMAX:%.*]] = call i64 @llvm.umax.i64(i64 [[UPPER_BOUND]], i64 1)
209208
; CHECK-NEXT: br label %[[LOOP:.*]]
210209
; CHECK: [[LOOP]]:
211210
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ [[IV_NEXT:%.*]], %[[LOOP]] ], [ 0, %[[LOOP_PREHEADER]] ]
212211
; CHECK-NEXT: [[DUMMY:%.*]] = load volatile i64, ptr null, align 8
213212
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
214-
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[IV_NEXT]], [[UMAX]]
213+
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[IV_NEXT]], [[UPPER_BOUND]]
215214
; CHECK-NEXT: br i1 [[EXITCOND]], label %[[LOOP]], label %[[EXIT_LOOPEXIT:.*]]
216215
; CHECK: [[EXIT_LOOPEXIT]]:
217216
; CHECK-NEXT: br label %[[EXIT]]

0 commit comments

Comments
 (0)