|
| 1 | +; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 6 |
| 2 | +; RUN: opt < %s -passes='print<delinearization>' --delinearize-use-fixed-size-array-heuristic -disable-output 2>&1 | FileCheck %s |
| 3 | + |
| 4 | +; FIXME: As for array accesses, the following property should hold (without |
| 5 | +; out-of-bound accesses): |
| 6 | +; |
| 7 | +; &A[I_1][I_2]...[I_n] == &A[J_1][J_2]...[J_n] iff |
| 8 | +; (I_1, I_2, ..., I_n) == (J_1, J_2, ..., J_n) |
| 9 | +; |
| 10 | +; Currently, delinearization doesn't guarantee this property, especially when |
| 11 | +; the inferred array size is very large so that the product of dimensions may |
| 12 | +; overflow. The delinearization validation should consider such cases as |
| 13 | +; invalid. |
| 14 | + |
| 15 | +; for (i = 0; i < (1ULL << 60); i++) |
| 16 | +; for (j = 0; j < 256; j++) |
| 17 | +; A[i*256 + j] = 0; |
| 18 | +; |
| 19 | +; The store will be delinearized to `A[i][j]` with its size `[][256]`. Since |
| 20 | +; `i` can be very large, the mapping from subscripts to addresses is not |
| 21 | +; injective. E.g., `&A[0][j] = &A[2^56][j] = ...`. |
| 22 | +; |
| 23 | +define void @large_size_fixed(ptr %A) { |
| 24 | +; CHECK-LABEL: 'large_size_fixed' |
| 25 | +; CHECK-NEXT: Inst: store i8 0, ptr %gep, align 1 |
| 26 | +; CHECK-NEXT: AccessFunction: {{\{\{}}0,+,256}<%for.i.header>,+,1}<nsw><%for.j> |
| 27 | +; CHECK-NEXT: Base offset: %A |
| 28 | +; CHECK-NEXT: ArrayDecl[UnknownSize][256] with elements of 1 bytes. |
| 29 | +; CHECK-NEXT: ArrayRef[{0,+,1}<nuw><nsw><%for.i.header>][{0,+,1}<nuw><nsw><%for.j>] |
| 30 | +; CHECK-NEXT: Delinearization validation: Succeeded |
| 31 | +; |
| 32 | +entry: |
| 33 | + br label %for.i.header |
| 34 | + |
| 35 | +for.i.header: |
| 36 | + %i = phi i64 [ 0, %entry ], [ %i.inc, %for.i.latch ] |
| 37 | + %i.mul = mul i64 %i, 256 |
| 38 | + br label %for.j |
| 39 | + |
| 40 | +for.j: |
| 41 | + %j = phi i64 [ 0, %for.i.header ], [ %j.inc, %for.j ] |
| 42 | + %offset = add nsw i64 %i.mul, %j |
| 43 | + %gep = getelementptr i8, ptr %A, i64 %offset |
| 44 | + store i8 0, ptr %gep |
| 45 | + %j.inc = add i64 %j, 1 |
| 46 | + %ec.j = icmp eq i64 %j.inc, 256 |
| 47 | + br i1 %ec.j, label %for.i.latch, label %for.j |
| 48 | + |
| 49 | +for.i.latch: |
| 50 | + %i.inc = add i64 %i, 1 |
| 51 | + %ec.i = icmp eq i64 %i.inc, 1152921504606846976 |
| 52 | + br i1 %ec.i, label %exit, label %for.i.header |
| 53 | + |
| 54 | +exit: |
| 55 | + ret void |
| 56 | +} |
| 57 | + |
| 58 | +; for (i = 0; i < n; i++) |
| 59 | +; for (j = 0; j < m; j++) |
| 60 | +; for (k = 0; k < o; k++) |
| 61 | +; if (i < 5 && j < 5 && k < 5) |
| 62 | +; A[i*m*o + j*o + k] = 0; |
| 63 | +; |
| 64 | +; The product (%m * %o) can overflow, e.g., (%m, %o) = (2^32 - 1, 2^32). In |
| 65 | +; this case, the delinearization `A[%i][%j][%k]` with its size `[][%m][%o]` |
| 66 | +; should be considered invalid, because the address calculation will be: |
| 67 | +; |
| 68 | +; A[%i][%j][%k] = %A + %i*%m*%o + %j*%o + %k |
| 69 | +; = %A - 2^32*%i + %j*2^32 + %k |
| 70 | +; = %A + 2^32*(%j - %i) + %k |
| 71 | +; |
| 72 | +; It means `&A[0][0][%k]` = `&A[1][1][%k]` = ..., which implies that the |
| 73 | +; mapping from subscripts to addresses is not injective. |
| 74 | +; |
| 75 | +define void @large_size_parametric(i64 %n, i64 %m, i64 %o, ptr %A) { |
| 76 | +; CHECK-LABEL: 'large_size_parametric' |
| 77 | +; CHECK-NEXT: Inst: store i8 0, ptr %gep, align 1 |
| 78 | +; CHECK-NEXT: AccessFunction: {{\{\{\{}}0,+,(%m * %o)}<%for.i.header>,+,%o}<%for.j.header>,+,1}<nw><%for.k.header> |
| 79 | +; CHECK-NEXT: Base offset: %A |
| 80 | +; CHECK-NEXT: ArrayDecl[UnknownSize][%m][%o] with elements of 1 bytes. |
| 81 | +; CHECK-NEXT: ArrayRef[{0,+,1}<nuw><nsw><%for.i.header>][{0,+,1}<nuw><nsw><%for.j.header>][{0,+,1}<nuw><nsw><%for.k.header>] |
| 82 | +; CHECK-NEXT: Delinearization validation: Succeeded |
| 83 | +; |
| 84 | +entry: |
| 85 | + %guard.i = icmp sgt i64 %n, 0 |
| 86 | + %m_o = mul i64 %m, %o |
| 87 | + br i1 %guard.i, label %for.i.header, label %exit |
| 88 | + |
| 89 | +for.i.header: |
| 90 | + %i = phi i64 [ 0, %entry ], [ %i.inc, %for.i.latch ] |
| 91 | + %i_m_o = mul i64 %i, %m_o |
| 92 | + br label %for.j.preheader |
| 93 | + |
| 94 | +for.j.preheader: |
| 95 | + %guard.j = icmp sgt i64 %m, 0 |
| 96 | + br i1 %guard.j, label %for.j.header, label %for.i.latch |
| 97 | + |
| 98 | +for.j.header: |
| 99 | + %j = phi i64 [ 0, %for.j.preheader ], [ %j.inc, %for.j.latch ] |
| 100 | + %j_o = mul i64 %j, %o |
| 101 | + br label %for.k.preheader |
| 102 | + |
| 103 | +for.k.preheader: |
| 104 | + %guard.k = icmp sgt i64 %o, 0 |
| 105 | + br i1 %guard.k, label %for.k.header, label %for.j.latch |
| 106 | + |
| 107 | +for.k.header: |
| 108 | + %k = phi i64 [ 0, %for.k.preheader ], [ %k.inc, %for.k.latch ] |
| 109 | + %cond.i = icmp slt i64 %i, 5 |
| 110 | + %cond.j = icmp slt i64 %j, 5 |
| 111 | + %cond.k = icmp slt i64 %k, 5 |
| 112 | + %cond.ij = and i1 %cond.i, %cond.j |
| 113 | + %cond = and i1 %cond.ij, %cond.k |
| 114 | + br i1 %cond, label %if.then, label %for.k.latch |
| 115 | + |
| 116 | +if.then: |
| 117 | + %offset.tmp = add i64 %i_m_o, %j_o |
| 118 | + %offset = add i64 %offset.tmp, %k |
| 119 | + %gep = getelementptr i8, ptr %A, i64 %offset |
| 120 | + store i8 0, ptr %gep, align 1 |
| 121 | + br label %for.k.latch |
| 122 | + |
| 123 | +for.k.latch: |
| 124 | + %k.inc = add nsw i64 %k, 1 |
| 125 | + %ec.k = icmp eq i64 %k.inc, %o |
| 126 | + br i1 %ec.k, label %for.j.latch, label %for.k.header |
| 127 | + |
| 128 | +for.j.latch: |
| 129 | + %j.inc = add nsw i64 %j, 1 |
| 130 | + %ec.j = icmp eq i64 %j.inc, %m |
| 131 | + br i1 %ec.j, label %for.i.latch, label %for.j.header |
| 132 | + |
| 133 | +for.i.latch: |
| 134 | + %i.inc = add nsw i64 %i, 1 |
| 135 | + %ec.i = icmp eq i64 %i.inc, %n |
| 136 | + br i1 %ec.i, label %exit, label %for.i.header |
| 137 | + |
| 138 | +exit: |
| 139 | + ret void |
| 140 | +} |
0 commit comments