@@ -164,6 +164,168 @@ template <size_t radix> using Custom = details::Fmt<radix>;
164164
165165} // namespace radix
166166
167+ // Extract the low-order decimal digit from a value of integer type T. The
168+ // returned value is the digit itself, from 0 to 9. The input value is passed
169+ // by reference, and modified by dividing by 10, so that iterating this
170+ // function extracts all the digits of the original number one at a time from
171+ // low to high.
172+ template <typename T, cpp::enable_if_t <cpp::is_integral_v<T>, int > = 0 >
173+ LIBC_INLINE uint8_t extract_decimal_digit (T &value) {
174+ const uint8_t digit (static_cast <uint8_t >(value % 10 ));
175+ // For built-in integer types, we assume that an adequately fast division is
176+ // available. If hardware division isn't implemented, then with a divisor
177+ // known at compile time the compiler might be able to generate an optimized
178+ // sequence instead.
179+ value /= 10 ;
180+ return digit;
181+ }
182+
183+ // A specialization of extract_decimal_digit for the BigInt type in big_int.h,
184+ // avoiding the use of general-purpose BigInt division which is very slow.
185+ template <typename T, cpp::enable_if_t <is_big_int_v<T>, int > = 0 >
186+ LIBC_INLINE uint8_t extract_decimal_digit (T &value) {
187+ // There are two essential ways you can turn n into (n/10,n%10). One is
188+ // ordinary integer division. The other is a modular-arithmetic approach in
189+ // which you first compute n%10 by bit twiddling, then subtract it off to get
190+ // a value that is definitely a multiple of 10. Then you divide that by 10 in
191+ // two steps: shift right to divide off a factor of 2, and then divide off a
192+ // factor of 5 by multiplying by the modular inverse of 5 mod 2^BITS. (That
193+ // last step only works if you know there's no remainder, which is why you
194+ // had to subtract off the output digit first.)
195+ //
196+ // Either approach can be made to work in linear time. This code uses the
197+ // modular-arithmetic technique, because the other approach either does a lot
198+ // of integer divisions (requiring a fast hardware divider), or else uses a
199+ // "multiply by an approximation to the reciprocal" technique which depends
200+ // on careful error analysis which might go wrong in an untested edge case.
201+
202+ using Word = typename T::word_type;
203+
204+ // Find the remainder (value % 10). We do this by breaking up the input
205+ // integer into chunks of size WORD_SIZE/2, so that the sum of them doesn't
206+ // overflow a Word. Then we sum all the half-words times 6, except the bottom
207+ // one, which is added to that sum without scaling.
208+ //
209+ // Why 6? Because you can imagine that the original number had the form
210+ //
211+ // halfwords[0] + K*halfwords[1] + K^2*halfwords[2] + ...
212+ //
213+ // where K = 2^(WORD_SIZE/2). Since WORD_SIZE is expected to be a multiple of
214+ // 8, that makes WORD_SIZE/2 a multiple of 4, so that K is a power of 16. And
215+ // all powers of 16 (larger than 1) are congruent to 6 mod 10, by induction:
216+ // 16 itself is, and 6^2=36 is also congruent to 6.
217+ Word acc_remainder = 0 ;
218+ const Word HALFWORD_BITS = T::WORD_SIZE / 2 ;
219+ const Word HALFWORD_MASK = ((Word (1 ) << HALFWORD_BITS) - 1 );
220+ // Sum both halves of all words except the low one.
221+ for (size_t i = 1 ; i < T::WORD_COUNT; i++) {
222+ acc_remainder += value.val [i] >> HALFWORD_BITS;
223+ acc_remainder += value.val [i] & HALFWORD_MASK;
224+ }
225+ // Add the high half of the low word. Then we have everything that needs to
226+ // be multiplied by 6, so do that.
227+ acc_remainder += value.val [0 ] >> HALFWORD_BITS;
228+ acc_remainder *= 6 ;
229+ // Having multiplied it by 6, add the lowest half-word, and then reduce mod
230+ // 10 by normal integer division to finish.
231+ acc_remainder += value.val [0 ] & HALFWORD_MASK;
232+ uint8_t digit = acc_remainder % 10 ;
233+
234+ // Now we have the output digit. Subtract it from the input value, and shift
235+ // right to divide by 2.
236+ value -= digit;
237+ value >>= 1 ;
238+
239+ // Now all that's left is to multiply by the inverse of 5 mod 2^BITS. No
240+ // matter what the value of BITS, the inverse of 5 has the very convenient
241+ // form 0xCCCC...CCCD, with as many C hex digits in the middle as necessary.
242+ //
243+ // We could construct a second BigInt with all words 0xCCCCCCCCCCCCCCCC,
244+ // increment the bottom word, and call a general-purpose multiply function.
245+ // But we can do better, by taking advantage of the regularity: we can do
246+ // this particular operation in linear time, whereas a general multiplier
247+ // would take superlinear time (quadratic in small cases).
248+ //
249+ // To begin with, instead of computing n*0xCCCC...CCCD, we'll compute
250+ // n*0xCCCC...CCCC and then add it to the original n. Then all the words of
251+ // the multiplier have the same value 0xCCCCCCCCCCCCCCCC, which I'll just
252+ // denote as C. If we also write t = 2^WORD_SIZE, and imagine (as an example)
253+ // that the input number has three words x,y,z with x being the low word,
254+ // then we're computing
255+ //
256+ // (x + y t + z t^2) * (C + C t + C t^2)
257+ //
258+ // = x C + y C t + z C t^2
259+ // + x C t + y C t^2 + z C t^3
260+ // + x C t^2 + y C t^3 + z C t^4
261+ //
262+ // but we're working mod t^3, so the high-order terms vanish and this becomes
263+ //
264+ // x C + y C t + z C t^2
265+ // + x C t + y C t^2
266+ // + x C t^2
267+ //
268+ // = x C + (x+y) C t + (x+y+z) C t^2
269+ //
270+ // So all you have to do is to work from the low word of the integer upwards,
271+ // accumulating C times the sum of all the words you've seen so far to get
272+ // x*C, (x+y)*C, (x+y+z)*C and so on. In each step you add another product to
273+ // the accumulator, and add the accumulator to the corresponding word of the
274+ // original number (so that we end up with value*CCCD, not just value*CCCC).
275+ //
276+ // If you do that literally, then your accumulator has to be three words
277+ // wide, because the sum of words can overflow into a second word, and
278+ // multiplying by C adds another word. But we can do slightly better by
279+ // breaking each product word*C up into a bottom half and a top half. If we
280+ // write x*C = xl + xh*t, and similarly for y and z, then our sum becomes
281+ //
282+ // (xl + xh t) + (yl + yh t) t + (zl + zh t) t^2
283+ // + (xl + xh t) t + (yl + yh t) t^2
284+ // + (xl + xh t) t^2
285+ //
286+ // and if you expand out again, collect terms, and discard t^3 terms, you get
287+ //
288+ // (xl)
289+ // + (xl + xh + yl) t
290+ // + (xl + xh + yl + yh + zl) t^2
291+ //
292+ // in which each coefficient is the sum of all the low words of the products
293+ // up to _and including_ the current word, plus all the high words up to but
294+ // _not_ including the current word. So now you only have to retain two words
295+ // of sum instead of three.
296+ //
297+ // We do this entire procedure in a single in-place pass over the input
298+ // number, reading each word to make its product with C and then adding the
299+ // low word of the accumulator to it.
300+ const Word C = (Word (0 ) - 1 ) / 5 * 4 ; // calculate 0xCCCC as 4/5 of 0xFFFF
301+ Word acc_lo = 0 , acc_hi = 0 ; // accumulator of all the half-products so far
302+ Word carry_bit, carry_word = 0 ;
303+
304+ for (size_t i = 0 ; i < T::WORD_COUNT; i++) {
305+ // Make the two-word product of C with the current input word.
306+ multiword::DoubleWide<Word> product = multiword::mul2 (C, value.val [i]);
307+
308+ // Add the low half of the product to our accumulator, but not yet the high
309+ // half.
310+ acc_lo = add_with_carry<Word>(acc_lo, product[0 ], 0 , carry_bit);
311+ acc_hi += carry_bit;
312+
313+ // Now the accumulator contains exactly the value we need to add to the
314+ // current input word. Add it, plus any carries from lower words, and make
315+ // a new word of carry data to propagate into the next iteration.
316+ value.val [i] = add_with_carry<Word>(value.val [i], carry_word, 0 , carry_bit);
317+ carry_word = acc_hi + carry_bit;
318+ value.val [i] = add_with_carry<Word>(value.val [i], acc_lo, 0 , carry_bit);
319+ carry_word += carry_bit;
320+
321+ // Now add the high half of the current product to our accumulator.
322+ acc_lo = add_with_carry<Word>(acc_lo, product[1 ], 0 , carry_bit);
323+ acc_hi += carry_bit;
324+ }
325+
326+ return digit;
327+ }
328+
167329// See file header for documentation.
168330template <typename T, typename Fmt = radix::Dec> class IntegerToString {
169331 static_assert (cpp::is_integral_v<T> || is_big_int_v<T>);
@@ -229,6 +391,15 @@ template <typename T, typename Fmt = radix::Dec> class IntegerToString {
229391 }
230392 }
231393
394+ LIBC_INLINE static void
395+ write_unsigned_number_dec (UNSIGNED_T value,
396+ details::BackwardStringBufferWriter &sink) {
397+ while (sink.ok () && value != 0 ) {
398+ const uint8_t digit = extract_decimal_digit (value);
399+ sink.push (digit_char (digit));
400+ }
401+ }
402+
232403 // Returns the absolute value of 'value' as 'UNSIGNED_T'.
233404 LIBC_INLINE static UNSIGNED_T abs (T value) {
234405 if (cpp::is_unsigned_v<T> || value >= 0 )
@@ -256,7 +427,7 @@ template <typename T, typename Fmt = radix::Dec> class IntegerToString {
256427 LIBC_INLINE static void write (T value,
257428 details::BackwardStringBufferWriter &sink) {
258429 if constexpr (Fmt::BASE == 10 ) {
259- write_unsigned_number (abs (value), sink);
430+ write_unsigned_number_dec (abs (value), sink);
260431 } else {
261432 write_unsigned_number (static_cast <UNSIGNED_T>(value), sink);
262433 }
0 commit comments