|
| 1 | +//===-- Half-precision asinpif16(x) function ------------------------------===// |
| 2 | +// |
| 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +// See https://llvm.org/LICENSE.txt for license information. |
| 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception. |
| 6 | +// |
| 7 | +//===----------------------------------------------------------------------===// |
| 8 | + |
| 9 | +#include "src/math/asinpif16.h" |
| 10 | +#include "hdr/errno_macros.h" |
| 11 | +#include "hdr/fenv_macros.h" |
| 12 | +#include "src/__support/FPUtil/FEnvImpl.h" |
| 13 | +#include "src/__support/FPUtil/FPBits.h" |
| 14 | +#include "src/__support/FPUtil/PolyEval.h" |
| 15 | +#include "src/__support/FPUtil/cast.h" |
| 16 | +#include "src/__support/FPUtil/except_value_utils.h" |
| 17 | +#include "src/__support/FPUtil/multiply_add.h" |
| 18 | +#include "src/__support/FPUtil/sqrt.h" |
| 19 | +#include "src/__support/macros/optimization.h" |
| 20 | + |
| 21 | +namespace LIBC_NAMESPACE_DECL { |
| 22 | + |
| 23 | +LLVM_LIBC_FUNCTION(float16, asinpif16, (float16 x)) { |
| 24 | + using FPBits = fputil::FPBits<float16>; |
| 25 | + |
| 26 | + FPBits xbits(x); |
| 27 | + bool is_neg = xbits.is_neg(); |
| 28 | + double x_abs = fputil::cast<double>(xbits.abs().get_val()); |
| 29 | + |
| 30 | + auto signed_result = [is_neg](auto r) -> auto { return is_neg ? -r : r; }; |
| 31 | + |
| 32 | + if (LIBC_UNLIKELY(x_abs > 1.0)) { |
| 33 | + // aspinf16(NaN) = NaN |
| 34 | + if (xbits.is_nan()) { |
| 35 | + if (xbits.is_signaling_nan()) { |
| 36 | + fputil::raise_except_if_required(FE_INVALID); |
| 37 | + return FPBits::quiet_nan().get_val(); |
| 38 | + } |
| 39 | + return x; |
| 40 | + } |
| 41 | + |
| 42 | + // 1 < |x| <= +/-inf |
| 43 | + fputil::raise_except_if_required(FE_INVALID); |
| 44 | + fputil::set_errno_if_required(EDOM); |
| 45 | + |
| 46 | + return FPBits::quiet_nan().get_val(); |
| 47 | + } |
| 48 | + |
| 49 | + // the coefficients for the polynomial approximation of asin(x)/pi in the |
| 50 | + // range [0, 0.5] extracted using python-sympy |
| 51 | + // |
| 52 | + // Python code to generate the coefficients: |
| 53 | + // > from sympy import * |
| 54 | + // > import math |
| 55 | + // > x = symbols('x') |
| 56 | + // > print(series(asin(x)/math.pi, x, 0, 21)) |
| 57 | + // |
| 58 | + // OUTPUT: |
| 59 | + // |
| 60 | + // 0.318309886183791*x + 0.0530516476972984*x**3 + 0.0238732414637843*x**5 + |
| 61 | + // 0.0142102627760621*x**7 + 0.00967087327815336*x**9 + |
| 62 | + // 0.00712127941391293*x**11 + 0.00552355646848375*x**13 + |
| 63 | + // 0.00444514782463692*x**15 + 0.00367705242846804*x**17 + |
| 64 | + // 0.00310721681820837*x**19 + O(x**21) |
| 65 | + // |
| 66 | + // it's very accurate in the range [0, 0.5] and has a maximum error of |
| 67 | + // 0.0000000000000001 in the range [0, 0.5]. |
| 68 | + constexpr double POLY_COEFFS[] = { |
| 69 | + 0x1.45f306dc9c889p-2, // x^1 |
| 70 | + 0x1.b2995e7b7b5fdp-5, // x^3 |
| 71 | + 0x1.8723a1d588a36p-6, // x^5 |
| 72 | + 0x1.d1a452f20430dp-7, // x^7 |
| 73 | + 0x1.3ce52a3a09f61p-7, // x^9 |
| 74 | + 0x1.d2b33e303d375p-8, // x^11 |
| 75 | + 0x1.69fde663c674fp-8, // x^13 |
| 76 | + 0x1.235134885f19bp-8, // x^15 |
| 77 | + }; |
| 78 | + // polynomial evaluation using horner's method |
| 79 | + // work only for |x| in [0, 0.5] |
| 80 | + auto asinpi_polyeval = [](double x) -> double { |
| 81 | + return x * fputil::polyeval(x * x, POLY_COEFFS[0], POLY_COEFFS[1], |
| 82 | + POLY_COEFFS[2], POLY_COEFFS[3], POLY_COEFFS[4], |
| 83 | + POLY_COEFFS[5], POLY_COEFFS[6], POLY_COEFFS[7]); |
| 84 | + }; |
| 85 | + |
| 86 | + // if |x| <= 0.5: |
| 87 | + if (LIBC_UNLIKELY(x_abs <= 0.5)) { |
| 88 | + // Use polynomial approximation of asin(x)/pi in the range [0, 0.5] |
| 89 | + double result = asinpi_polyeval(fputil::cast<double>(x)); |
| 90 | + return fputil::cast<float16>(result); |
| 91 | + } |
| 92 | + |
| 93 | + // If |x| > 0.5, we need to use the range reduction method: |
| 94 | + // y = asin(x) => x = sin(y) |
| 95 | + // because: sin(a) = cos(pi/2 - a) |
| 96 | + // therefore: |
| 97 | + // x = cos(pi/2 - y) |
| 98 | + // let z = pi/2 - y, |
| 99 | + // x = cos(z) |
| 100 | + // because: cos(2a) = 1 - 2 * sin^2(a), z = 2a, a = z/2 |
| 101 | + // therefore: |
| 102 | + // cos(z) = 1 - 2 * sin^2(z/2) |
| 103 | + // sin(z/2) = sqrt((1 - cos(z))/2) |
| 104 | + // sin(z/2) = sqrt((1 - x)/2) |
| 105 | + // let u = (1 - x)/2 |
| 106 | + // then: |
| 107 | + // sin(z/2) = sqrt(u) |
| 108 | + // z/2 = asin(sqrt(u)) |
| 109 | + // z = 2 * asin(sqrt(u)) |
| 110 | + // pi/2 - y = 2 * asin(sqrt(u)) |
| 111 | + // y = pi/2 - 2 * asin(sqrt(u)) |
| 112 | + // y/pi = 1/2 - 2 * asin(sqrt(u))/pi |
| 113 | + // |
| 114 | + // Finally, we can write: |
| 115 | + // asinpi(x) = 1/2 - 2 * asinpi(sqrt(u)) |
| 116 | + // where u = (1 - x) /2 |
| 117 | + // = 0.5 - 0.5 * x |
| 118 | + // = multiply_add(-0.5, x, 0.5) |
| 119 | + |
| 120 | + double u = fputil::multiply_add(-0.5, x_abs, 0.5); |
| 121 | + double asinpi_sqrt_u = asinpi_polyeval(fputil::sqrt<double>(u)); |
| 122 | + double result = fputil::multiply_add(-2.0, asinpi_sqrt_u, 0.5); |
| 123 | + |
| 124 | + return fputil::cast<float16>(signed_result(result)); |
| 125 | +} |
| 126 | + |
| 127 | +} // namespace LIBC_NAMESPACE_DECL |
0 commit comments