Skip to content

Commit f5d7875

Browse files
committed
format
1 parent d46b357 commit f5d7875

File tree

2 files changed

+33
-24
lines changed

2 files changed

+33
-24
lines changed

mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -348,7 +348,6 @@ FailureOr<VectorType> TensorDescType::getDistributedVectorType() {
348348
auto sgSize = std::accumulate(laneData.begin(), laneData.end(), 1,
349349
std::multiplies<int64_t>());
350350

351-
352351
// Case 1: regular loads/stores
353352
auto scatterAttr = getEncodingAsScatterTensorDescAttr();
354353
if (scatterAttr) {

mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp

Lines changed: 33 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -269,19 +269,22 @@ LogicalResult LoadNdOp::verify() {
269269
// result in SIMT mode. In the latter case, the tensor descriptor must be
270270
// evenly distributed, with each lane holding an equally sized fragment of
271271
// the result. Only subgroup size 8 or 16 is supported.
272-
if (valueTy.getRank() == 1 && valueTy.getNumElements() < tdescTy.getNumElements()) {
272+
if (valueTy.getRank() == 1 &&
273+
valueTy.getNumElements() < tdescTy.getNumElements()) {
273274
// SIMT mode doesn't need LayoutAttr.
274275
if (tdescTy.getLayoutAttr())
275-
return emitOpError() << "TensorDesc doesn't need LayoutAttr for SIMT code";
276+
return emitOpError()
277+
<< "TensorDesc doesn't need LayoutAttr for SIMT code";
276278

277279
int tdescElems = tdescTy.getNumElements() * tdescTy.getArrayLength();
278280
int valueElems = valueTy.getNumElements();
279281

280-
int lanes = tdescElems % valueElems == 0 ? tdescElems / valueElems: -1;
282+
int lanes = tdescElems % valueElems == 0 ? tdescElems / valueElems : -1;
281283
if (lanes != 16 && lanes != 8) {
282-
return emitOpError() << "Result shape " << makeString(getShapeOf(valueTy))
283-
<< " is not a valid distribution for tensor descriptor "
284-
<< tdescTy;
284+
return emitOpError()
285+
<< "Result shape " << makeString(getShapeOf(valueTy))
286+
<< " is not a valid distribution for tensor descriptor "
287+
<< tdescTy;
285288
}
286289
return success();
287290
}
@@ -325,7 +328,8 @@ LogicalResult LoadNdOp::verify() {
325328

326329
if (tdescShape != valueShape) {
327330
return emitOpError() << "Result shape " << makeString(valueShape)
328-
<< " is not consistent with tensor descriptor " << tdescTy;
331+
<< " is not consistent with tensor descriptor "
332+
<< tdescTy;
329333
}
330334

331335
return success();
@@ -362,29 +366,31 @@ LogicalResult StoreNdOp::verify() {
362366
// Similar to LoadNdOp, handling a 1D vector as the value can be complex. It
363367
// may represent the input of a 1D block store in SIMD mode or a fragment of
364368
// a block store input in SIMT mode. In the latter case, the tensor descriptor
365-
// must be evenly distributed, with each lane holding an equally sized fragment of
366-
// the input. Only subgroup size 8 or 16 is supported.
369+
// must be evenly distributed, with each lane holding an equally sized
370+
// fragment of the input. Only subgroup size 8 or 16 is supported.
367371
if (valTy.getRank() == 1 && valTy.getNumElements() < dstTy.getNumElements()) {
368372
// SIMT mode doesn't need LayoutAttr.
369373
if (dstTy.getLayoutAttr())
370-
return emitOpError() << "TensorDesc doesn't need LayoutAttr for SIMT code";
374+
return emitOpError()
375+
<< "TensorDesc doesn't need LayoutAttr for SIMT code";
371376

372377
int tdescElems = dstTy.getNumElements() * dstTy.getArrayLength();
373378
int valueElems = valueShape[0];
374379

375-
int lanes = tdescElems % valueElems == 0 ? tdescElems / valueElems: -1;
380+
int lanes = tdescElems % valueElems == 0 ? tdescElems / valueElems : -1;
376381
if (lanes != 16 && lanes != 8) {
377-
return emitOpError() << "Value shape " << makeString(getShapeOf(valTy))
378-
<< " is not a valid distribution for tensor descriptor "
379-
<< dstTy;
382+
return emitOpError()
383+
<< "Value shape " << makeString(getShapeOf(valTy))
384+
<< " is not a valid distribution for tensor descriptor " << dstTy;
380385
}
381386
return success();
382387
}
383388

384389
// SIMD code should have the same shape as the tensor descriptor.
385390
if (tdescShape != valueShape) {
386391
return emitOpError() << "Value shape " << makeString(valueShape)
387-
<< " is not consistent with tensor descriptor " << dstTy;
392+
<< " is not consistent with tensor descriptor "
393+
<< dstTy;
388394
}
389395

390396
return success();
@@ -539,12 +545,14 @@ LogicalResult LoadGatherOp::verify() {
539545
if (valueTy.getRank() == 1 && valueTy.getNumElements() != tdescShape[0]) {
540546
auto chunkSize = tdescTy.getChunkSize();
541547
if (valueTy.getNumElements() != chunkSize) {
542-
return emitOpError() << "Result shape " << makeString(valueShape)
543-
<< " is not a valid distribution for tensor descriptor "
544-
<< tdescTy;
548+
return emitOpError()
549+
<< "Result shape " << makeString(valueShape)
550+
<< " is not a valid distribution for tensor descriptor "
551+
<< tdescTy;
545552
} else { // valid SIMT code doesn't need LayoutAttr and TransposeAttr.
546553
if (tdescTy.getLayoutAttr())
547-
return emitOpError() << "TensorDesc doesn't need LayoutAttr for SIMT code";
554+
return emitOpError()
555+
<< "TensorDesc doesn't need LayoutAttr for SIMT code";
548556
if (getTransposeAttr())
549557
return emitOpError() << "doesn't need TransposeAttr for SIMT code";
550558
}
@@ -598,12 +606,14 @@ LogicalResult StoreScatterOp::verify() {
598606
if (valueTy.getRank() == 1 && valueTy.getNumElements() != tdescShape[0]) {
599607
auto chunkSize = tdescTy.getChunkSize();
600608
if (valueTy.getNumElements() != chunkSize) {
601-
return emitOpError() << "Value shape " << makeString(valueShape)
602-
<< " is not a valid distribution for tensor descriptor "
603-
<< tdescTy;
609+
return emitOpError()
610+
<< "Value shape " << makeString(valueShape)
611+
<< " is not a valid distribution for tensor descriptor "
612+
<< tdescTy;
604613
} else { // valid SIMT code doesn't need LayoutAttr and TransposeAttr.
605614
if (tdescTy.getLayoutAttr())
606-
return emitOpError() << "TensorDesc doesn't need LayoutAttr for SIMT code";
615+
return emitOpError()
616+
<< "TensorDesc doesn't need LayoutAttr for SIMT code";
607617
if (getTransposeAttr())
608618
return emitOpError() << "doesn't need TransposeAttr for SIMT code";
609619
}

0 commit comments

Comments
 (0)