-
Notifications
You must be signed in to change notification settings - Fork 15.2k
[NFC][MLIR][NVGPU] Cleanup namespace usage #162158
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
jurahul
wants to merge
1
commit into
llvm:main
Choose a base branch
from
jurahul:nfc_nvgpu_dialect_ns
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
+113
−128
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Eliminate `nvgpu::` prefix in several places.
@llvm/pr-subscribers-mlir-gpu @llvm/pr-subscribers-mlir Author: Rahul Joshi (jurahul) ChangesEliminate Patch is 24.87 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/162158.diff 4 Files Affected:
diff --git a/mlir/lib/Dialect/NVGPU/IR/NVGPUDialect.cpp b/mlir/lib/Dialect/NVGPU/IR/NVGPUDialect.cpp
index 697cb35a59a28..237aab4d7f309 100644
--- a/mlir/lib/Dialect/NVGPU/IR/NVGPUDialect.cpp
+++ b/mlir/lib/Dialect/NVGPU/IR/NVGPUDialect.cpp
@@ -27,7 +27,7 @@ using namespace mlir::nvgpu;
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.cpp.inc"
-void nvgpu::NVGPUDialect::initialize() {
+void NVGPUDialect::initialize() {
addTypes<
#define GET_TYPEDEF_LIST
#include "mlir/Dialect/NVGPU/IR/NVGPUTypeDefs.cpp.inc"
@@ -42,7 +42,7 @@ void nvgpu::NVGPUDialect::initialize() {
>();
}
-bool nvgpu::NVGPUDialect::isSharedMemoryAddressSpace(Attribute memorySpace) {
+bool NVGPUDialect::isSharedMemoryAddressSpace(Attribute memorySpace) {
if (!memorySpace)
return false;
if (auto intAttr = llvm::dyn_cast<IntegerAttr>(memorySpace))
@@ -52,7 +52,7 @@ bool nvgpu::NVGPUDialect::isSharedMemoryAddressSpace(Attribute memorySpace) {
return false;
}
-bool nvgpu::NVGPUDialect::hasSharedMemoryAddressSpace(MemRefType type) {
+bool NVGPUDialect::hasSharedMemoryAddressSpace(MemRefType type) {
Attribute memorySpace = type.getMemorySpace();
return isSharedMemoryAddressSpace(memorySpace);
}
@@ -140,7 +140,6 @@ static LogicalResult verifyMmaSyncOp(Operation *op,
TypedValue<VectorType> matrixC,
const std::array<int64_t, 3> &mmaShape,
bool tf32Enabled, bool sparse = false) {
-
// The verification for mma.sync covering various shapes and data types is
// based on the fundamental tensor core shape.
@@ -292,7 +291,6 @@ LogicalResult MmaSparseSyncOp::verify() {
// NVGPU_LdMatrixOp
//===----------------------------------------------------------------------===//
LogicalResult LdMatrixOp::verify() {
-
// ldmatrix reads data from source in shared memory
auto srcMemref = llvm::cast<MemRefType>(getSrcMemref().getType());
@@ -345,7 +343,7 @@ LogicalResult LdMatrixOp::verify() {
// NVGPU_TmaAsyncLoadOp
//===----------------------------------------------------------------------===//
-unsigned getSwizzleBytes(TensorMapSwizzleKind kind) {
+static unsigned getSwizzleBytes(TensorMapSwizzleKind kind) {
switch (kind) {
case TensorMapSwizzleKind::SWIZZLE_32B:
return 32;
@@ -359,7 +357,7 @@ unsigned getSwizzleBytes(TensorMapSwizzleKind kind) {
}
std::optional<InFlightDiagnostic> verifyTmaDescriptorWithMemref(
- Operation *op, nvgpu::TensorMapDescriptorType descType,
+ Operation *op, TensorMapDescriptorType descType,
std::optional<MemRefType> memrefType = std::nullopt) {
MemRefType descMemref = descType.getTensor();
// Limitation
@@ -655,8 +653,7 @@ LogicalResult WarpgroupMmaStoreOp::verify() {
//===----------------------------------------------------------------------===//
LogicalResult WarpgroupMmaInitAccumulatorOp::verify() {
-
- nvgpu::WarpgroupAccumulatorType accType = getMatrixC().getType();
+ WarpgroupAccumulatorType accType = getMatrixC().getType();
int64_t sizeM = accType.getFragmented().getDimSize(0);
int64_t sizeN = accType.getFragmented().getDimSize(1);
Type elemType = accType.getFragmented().getElementType();
diff --git a/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp b/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
index 46e82bd8fc8c8..2a857eddbb932 100644
--- a/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
+++ b/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
@@ -43,7 +43,7 @@ using namespace mlir::transform;
// Apply...ConversionPatternsOp
//===----------------------------------------------------------------------===//
-void transform::ApplyNVGPUToNVVMConversionPatternsOp::populatePatterns(
+void ApplyNVGPUToNVVMConversionPatternsOp::populatePatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns) {
auto &llvmTypeConverter = static_cast<LLVMTypeConverter &>(typeConverter);
/// device-side async tokens cannot be materialized in nvvm. We just
@@ -62,62 +62,58 @@ void transform::ApplyNVGPUToNVVMConversionPatternsOp::populatePatterns(
llvm_unreachable("unknown address space enum value");
return static_cast<unsigned>(NVVM::NVVMMemorySpace::Generic);
});
- llvmTypeConverter.addConversion(
- [&](nvgpu::DeviceAsyncTokenType type) -> Type {
- return llvmTypeConverter.convertType(
- IntegerType::get(type.getContext(), 32));
- });
- llvmTypeConverter.addConversion([&](nvgpu::MBarrierTokenType type) -> Type {
+ llvmTypeConverter.addConversion([&](DeviceAsyncTokenType type) -> Type {
+ return llvmTypeConverter.convertType(
+ IntegerType::get(type.getContext(), 32));
+ });
+ llvmTypeConverter.addConversion([&](MBarrierTokenType type) -> Type {
return llvmTypeConverter.convertType(
IntegerType::get(type.getContext(), 64));
});
- llvmTypeConverter.addConversion(
- [&](nvgpu::WarpgroupAccumulatorType type) -> Type {
- Type elemType = type.getFragmented().getElementType();
- int64_t sizeM = type.getFragmented().getDimSize(0);
- int64_t sizeN = type.getFragmented().getDimSize(1);
-
- unsigned numMembers;
- if (elemType.isF32() || elemType.isInteger(32))
- numMembers = sizeN / 2;
- else if (elemType.isF16())
- numMembers = sizeN / 4;
- else
- llvm_unreachable("unsupported type for warpgroup accumulator");
-
- SmallVector<Type> innerStructBody;
- for (unsigned i = 0; i < numMembers; i++)
- innerStructBody.push_back(elemType);
- auto innerStructType = LLVM::LLVMStructType::getLiteral(
- type.getContext(), innerStructBody);
-
- SmallVector<Type> structBody;
- for (int i = 0; i < sizeM; i += kWgmmaSizeM)
- structBody.push_back(innerStructType);
-
- auto convertedType =
- LLVM::LLVMStructType::getLiteral(type.getContext(), structBody);
- return llvmTypeConverter.convertType(convertedType);
- });
- llvmTypeConverter.addConversion([&](nvgpu::MBarrierGroupType type) -> Type {
+ llvmTypeConverter.addConversion([&](WarpgroupAccumulatorType type) -> Type {
+ Type elemType = type.getFragmented().getElementType();
+ int64_t sizeM = type.getFragmented().getDimSize(0);
+ int64_t sizeN = type.getFragmented().getDimSize(1);
+
+ unsigned numMembers;
+ if (elemType.isF32() || elemType.isInteger(32))
+ numMembers = sizeN / 2;
+ else if (elemType.isF16())
+ numMembers = sizeN / 4;
+ else
+ llvm_unreachable("unsupported type for warpgroup accumulator");
+
+ SmallVector<Type> innerStructBody;
+ for (unsigned i = 0; i < numMembers; i++)
+ innerStructBody.push_back(elemType);
+ auto innerStructType =
+ LLVM::LLVMStructType::getLiteral(type.getContext(), innerStructBody);
+
+ SmallVector<Type> structBody;
+ for (int i = 0; i < sizeM; i += kWgmmaSizeM)
+ structBody.push_back(innerStructType);
+
+ auto convertedType =
+ LLVM::LLVMStructType::getLiteral(type.getContext(), structBody);
+ return llvmTypeConverter.convertType(convertedType);
+ });
+ llvmTypeConverter.addConversion([&](MBarrierGroupType type) -> Type {
return llvmTypeConverter.convertType(
getMBarrierMemrefType(type.getContext(), type));
});
llvmTypeConverter.addConversion(
- [&](nvgpu::WarpgroupMatrixDescriptorType type) -> Type {
+ [&](WarpgroupMatrixDescriptorType type) -> Type {
return llvmTypeConverter.convertType(
IntegerType::get(type.getContext(), 64));
});
- llvmTypeConverter.addConversion(
- [&](nvgpu::TensorMapDescriptorType type) -> Type {
- return LLVM::LLVMPointerType::get(type.getContext());
- });
+ llvmTypeConverter.addConversion([&](TensorMapDescriptorType type) -> Type {
+ return LLVM::LLVMPointerType::get(type.getContext());
+ });
populateNVGPUToNVVMConversionPatterns(llvmTypeConverter, patterns);
}
-LogicalResult
-transform::ApplyNVGPUToNVVMConversionPatternsOp::verifyTypeConverter(
- transform::TypeConverterBuilderOpInterface builder) {
+LogicalResult ApplyNVGPUToNVVMConversionPatternsOp::verifyTypeConverter(
+ TypeConverterBuilderOpInterface builder) {
if (builder.getTypeConverterType() != "LLVMTypeConverter")
return emitOpError("expected LLVMTypeConverter");
return success();
@@ -127,17 +123,18 @@ transform::ApplyNVGPUToNVVMConversionPatternsOp::verifyTypeConverter(
// CreateAsyncGroupsOp
//===---------------------------------------------------------------------===//
-void transform::CreateAsyncGroupsOp::getEffects(
+void CreateAsyncGroupsOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
- transform::consumesHandle(getTargetMutable(), effects);
- transform::producesHandle(getOperation()->getOpResults(), effects);
- transform::modifiesPayload(effects);
+ consumesHandle(getTargetMutable(), effects);
+ producesHandle(getOperation()->getOpResults(), effects);
+ modifiesPayload(effects);
}
-DiagnosedSilenceableFailure transform::CreateAsyncGroupsOp::applyToOne(
- TransformRewriter &rewriter, Operation *target,
- ApplyToEachResultList &results, TransformState &state) {
- nvgpu::createAsyncGroups(rewriter, target, getBypassL1());
+DiagnosedSilenceableFailure
+CreateAsyncGroupsOp::applyToOne(TransformRewriter &rewriter, Operation *target,
+ ApplyToEachResultList &results,
+ TransformState &state) {
+ createAsyncGroups(rewriter, target, getBypassL1());
results.push_back(target);
return DiagnosedSilenceableFailure::success();
}
@@ -218,7 +215,7 @@ collectStage0PipeliningOps(scf::ForOp forOp,
continue;
}
- if (isa<nvgpu::DeviceAsyncCopyOp, nvgpu::DeviceAsyncCreateGroupOp>(op)) {
+ if (isa<DeviceAsyncCopyOp, DeviceAsyncCreateGroupOp>(op)) {
ops.insert(&op);
ops.insert(std::make_move_iterator(barriers.begin()),
std::make_move_iterator(barriers.end()));
@@ -246,7 +243,7 @@ setAsyncWaitGroupsInFlight(OpBuilder &builder, Operation *op,
unsigned iteration, unsigned depth) {
// Based on the order of copies within the loop we need to set the number
// of copies in flight, unless it is already set.
- auto waitOp = dyn_cast<nvgpu::DeviceAsyncWaitOp>(op);
+ auto waitOp = dyn_cast<DeviceAsyncWaitOp>(op);
if (!waitOp || waitOp.getNumGroups())
return;
@@ -312,13 +309,12 @@ static Operation *replaceOpWithPredicatedOp(RewriterBase &rewriter,
// original number of iterations, in particular side-effect free operations
// and barriers, even if they cannot be predicated.
if (isMemoryEffectFree(op) ||
- isa<gpu::BarrierOp, nvgpu::DeviceAsyncCreateGroupOp,
- nvgpu::DeviceAsyncWaitOp>(op)) {
+ isa<gpu::BarrierOp, DeviceAsyncCreateGroupOp, DeviceAsyncWaitOp>(op)) {
return op;
}
// Otherwise, only async copies can currently be predicated.
- auto asyncCopyOp = dyn_cast<nvgpu::DeviceAsyncCopyOp>(op);
+ auto asyncCopyOp = dyn_cast<DeviceAsyncCopyOp>(op);
if (!asyncCopyOp)
return nullptr;
@@ -335,8 +331,8 @@ static Operation *replaceOpWithPredicatedOp(RewriterBase &rewriter,
Value c0Index = arith::ConstantIndexOp::create(rewriter, loc, 0);
auto srcElements = arith::SelectOp::create(rewriter, loc, predicate,
originalSrcElement, c0Index);
- auto asyncCopyZeroFillOp = nvgpu::DeviceAsyncCopyOp::create(
- rewriter, loc, nvgpu::DeviceAsyncTokenType::get(asyncCopyOp.getContext()),
+ auto asyncCopyZeroFillOp = DeviceAsyncCopyOp::create(
+ rewriter, loc, DeviceAsyncTokenType::get(asyncCopyOp.getContext()),
asyncCopyOp.getDst(), asyncCopyOp.getDstIndices(), asyncCopyOp.getSrc(),
asyncCopyOp.getSrcIndices(), asyncCopyOp.getDstElements(), srcElements,
UnitAttr());
@@ -805,17 +801,16 @@ FailureOr<Operation *> MmaSyncBuilder::buildMmaSync(LinalgOp linalgOp) {
rhsIndexFn, rhsShape);
Value res = buildMmaSyncMemRefLoadOperand(b, loc, laneId, resMemRef,
resIndexFn, resShape);
- res = nvgpu::MmaSyncOp::create(b, loc, lhs, rhs, res, info.mmaShape,
- info.tf32Enabled);
+ res =
+ MmaSyncOp::create(b, loc, lhs, rhs, res, info.mmaShape, info.tf32Enabled);
buildMmaSyncMemRefStoreOperand(b, loc, res, laneId, resMemRef, resIndexFn,
resShape);
return res.getDefiningOp();
}
-DiagnosedSilenceableFailure transform::RewriteMatmulAsMmaSyncOp::applyToOne(
- transform::TransformRewriter &rewriter, LinalgOp linalgOp,
- transform::ApplyToEachResultList &results,
- transform::TransformState &state) {
+DiagnosedSilenceableFailure RewriteMatmulAsMmaSyncOp::applyToOne(
+ TransformRewriter &rewriter, LinalgOp linalgOp,
+ ApplyToEachResultList &results, TransformState &state) {
bool fail = true;
// TODO: more robust detection of matmulOp, with transposes etc.
if (isa_and_nonnull<linalg::MatmulOp>(linalgOp.getOperation())) {
@@ -854,43 +849,42 @@ struct HopperBuilder {
HopperBuilder(RewriterBase &rewriter, Location loc)
: rewriter(rewriter), loc(loc) {}
- TypedValue<nvgpu::MBarrierGroupType>
+ TypedValue<MBarrierGroupType>
buildAndInitBarrierInSharedMemory(OpFoldResult numThreads);
/// Create tma descriptor op to initiate transfer from global to shared
/// memory. This must be done before the launch op, on the host.
- TypedValue<nvgpu::TensorMapDescriptorType>
+ TypedValue<TensorMapDescriptorType>
buildGlobalMemRefDescriptor(TypedValue<MemRefType> memref,
gpu::LaunchOp launchOp);
/// Build a tma load from global memory to shared memory using `barrier` to
/// synchronize. Return the number of bytes that will be transferred.
- OpFoldResult
- buildTmaAsyncLoad(TypedValue<nvgpu::TensorMapDescriptorType> globalDesc,
- TypedValue<MemRefType> sharedMemref,
- TypedValue<nvgpu::MBarrierGroupType> barrier,
- SmallVectorImpl<Operation *> &loadOps);
- void buildBarrierArriveTx(TypedValue<nvgpu::MBarrierGroupType> barrier,
+ OpFoldResult buildTmaAsyncLoad(TypedValue<TensorMapDescriptorType> globalDesc,
+ TypedValue<MemRefType> sharedMemref,
+ TypedValue<MBarrierGroupType> barrier,
+ SmallVectorImpl<Operation *> &loadOps);
+ void buildBarrierArriveTx(TypedValue<MBarrierGroupType> barrier,
ArrayRef<OpFoldResult> sizes);
/// If threadIdx.x == 0 does TMA request + wait, else just wait.
/// Return the operation that performs the transfer on thread0.
// TODO: In the future, don't hardcode to thread 0 but elect a leader.
SmallVector<Operation *> buildPredicateLoadsOnThread0(
- ArrayRef<TypedValue<nvgpu::TensorMapDescriptorType>> globalDescriptors,
+ ArrayRef<TypedValue<TensorMapDescriptorType>> globalDescriptors,
ArrayRef<TypedValue<MemRefType>> sharedMemBuffers,
- TypedValue<nvgpu::MBarrierGroupType> barrier);
+ TypedValue<MBarrierGroupType> barrier);
- void buildTryWaitParity(TypedValue<nvgpu::MBarrierGroupType> barrier);
+ void buildTryWaitParity(TypedValue<MBarrierGroupType> barrier);
RewriterBase &rewriter;
Location loc;
};
SmallVector<Operation *> HopperBuilder::buildPredicateLoadsOnThread0(
- ArrayRef<TypedValue<nvgpu::TensorMapDescriptorType>> globalDescriptors,
+ ArrayRef<TypedValue<TensorMapDescriptorType>> globalDescriptors,
ArrayRef<TypedValue<MemRefType>> sharedMemBuffers,
- TypedValue<nvgpu::MBarrierGroupType> barrier) {
+ TypedValue<MBarrierGroupType> barrier) {
SmallVector<Operation *> loadOps;
Value zero = arith::ConstantIndexOp::create(rewriter, loc, 0);
Value tidx = gpu::ThreadIdOp::create(rewriter, loc, gpu::Dimension::x);
@@ -931,22 +925,22 @@ static Attribute getSharedAddressSpaceAttribute(OpBuilder &b) {
// return b.getI64IntegerAttr(static_cast<int64_t>(kSharedMemorySpace));
}
-TypedValue<nvgpu::MBarrierGroupType>
+TypedValue<MBarrierGroupType>
HopperBuilder::buildAndInitBarrierInSharedMemory(OpFoldResult numThreads) {
auto sharedMemorySpace = getSharedAddressSpaceAttribute(rewriter);
- Value barrier = nvgpu::MBarrierCreateOp::create(
+ Value barrier = MBarrierCreateOp::create(
rewriter, loc,
- nvgpu::MBarrierGroupType::get(rewriter.getContext(), sharedMemorySpace));
+ MBarrierGroupType::get(rewriter.getContext(), sharedMemorySpace));
Value zero = arith::ConstantIndexOp::create(rewriter, loc, 0);
nvgpu::MBarrierInitOp::create(
rewriter, loc, barrier,
getValueOrCreateConstantIndexOp(rewriter, loc, numThreads), zero,
Value());
gpu::BarrierOp::create(rewriter, loc);
- return cast<TypedValue<nvgpu::MBarrierGroupType>>(barrier);
+ return cast<TypedValue<MBarrierGroupType>>(barrier);
}
-TypedValue<nvgpu::TensorMapDescriptorType>
+TypedValue<TensorMapDescriptorType>
HopperBuilder::buildGlobalMemRefDescriptor(TypedValue<MemRefType> memref,
gpu::LaunchOp launchOp) {
OpBuilder::InsertionGuard guard(rewriter);
@@ -962,29 +956,29 @@ HopperBuilder::buildGlobalMemRefDescriptor(TypedValue<MemRefType> memref,
getValueOrCreateConstantIndexOp(rewriter, loc, mixedSizes);
auto sharedMemorySpace = getSharedAddressSpaceAttribute(rewriter);
- Value desc = nvgpu::TmaCreateDescriptorOp::create(
+ Value desc = TmaCreateDescriptorOp::create(
rewriter, loc,
- nvgpu::TensorMapDescriptorType::get(
- rewriter.getContext(),
- MemRefType::Builder(memref.getType())
- .setMemorySpace(sharedMemorySpace),
- TensorMapSwizzleKind::SWIZZLE_NONE,
- TensorMapL2PromoKind::L2PROMO_NONE, TensorMapOOBKind::OOB_ZERO,
- TensorMapInterleaveKind::INTERLEAVE_NONE),
+ TensorMapDescriptorType::get(rewriter.getContext(),
+ MemRefType::Builder(memref.getType())
+ .setMemorySpace(sharedMemorySpace),
+ TensorMapSwizzleKind::SWIZZLE_NONE,
+ TensorMapL2PromoKind::L2PROMO_NONE,
+ TensorMapOOBKind::OOB_ZERO,
+ TensorMapInterleaveKind::INTERLEAVE_NONE),
unrankedMemRef, sizes);
- return cast<TypedValue<nvgpu::TensorMapDescriptorType>>(desc);
+ return cast<TypedValue<TensorMapDescriptorType>>(desc);
}
-OpFoldResult HopperBuilder::buildTmaAsyncLoad(
- TypedValue<nvgpu::TensorMapDescriptorType> globalDesc,
- TypedValue<MemRefType> sharedMemref,
- TypedValue<nvgpu::MBarrierGroupType> barrier,
- SmallVectorImpl<Operation *> &loadOps) {
+OpFoldResult
+HopperBuilder::buildTmaAsyncLoad(TypedValue<TensorMapDescriptorType> globalDesc,
+ TypedValue<MemRefType> sharedMemref,
+ TypedValue<MBarrierGroupType> barrier,
+ SmallVectorImpl<Operation *> &loadOps) {
MLIRContext *ctx = rewriter.getContext();
Value zero = arith::ConstantIndexOp::create(rewriter, loc, 0);
- Operation *loadOp = nvgpu::TmaAsyncLoadOp::create(
- rewriter, loc, sharedMemref, barrier, globalDesc, ValueRange{zero, zero},
- zero, Value(), Value());
+ Operation *loadOp =
+ TmaAsyncLoadOp::create(rewriter, loc, sharedMemref, barrier, globalDesc,
+ ValueRange{zero, zero}, zero, Value(), Value());
loadOps.push_back(loadOp);
auto mixedSizes = memref::getMixedSizes(rewriter, loc, sharedMemref);
SmallVector<AffineExpr> symbols(mixedSizes.size());
@@ -997,9 +991,8 @@ OpFoldResult HopperBuilder::buildTmaAsyncLoad(
return res;
}
-void HopperBuilder::buildBarrierArriveTx(
- TypedValue<nvgpu::MBarrierGroupType> barrier,
- ArrayRef<OpFoldResult> mixedSizes) {
+void HopperBuilder::buildBarrierArriveTx(TypedValue<MBarrierGroupType> barrier,
+ ArrayRef<OpFoldResult> mixedSizes) {
assert(!mixedSizes.empty() && "expecte non-empty sizes");
MLIRContext *ct...
[truncated]
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Eliminate
nvgpu::
prefix in several places.