-
Notifications
You must be signed in to change notification settings - Fork 14.9k
[mlir][XeGPU][VectorToXeGPU] Propagate vector layouts to xegpu ops #163071
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
Signed-off-by: dchigarev <[email protected]>
Signed-off-by: dchigarev <[email protected]>
Signed-off-by: dchigarev <[email protected]>
// Extract indices layout and propagate it to all 'vector' ops created here | ||
auto indicesLayout = mlir::xegpu::getDistributeLayoutAttr(indices); | ||
VectorType vecType = cast<VectorType>(indices.getType()); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
In this section we compute 'flat' indices for the xegpu.load/store
op using vector's %indices
operand like this:
%base_offset = vector.broadcast index -> vector<...>
%last_stride = vector.broadcast index -> vector<...>
%flat_indices = %indices * %last_stride + %base_offset
We want all the vector broadcast/add/mul operations that are generated here to have layout_result_0
to be equal to the %indices
layout.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We should use the propagation pass to properly set up the layout attributes for non-anchor ops.
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-gpu Author: Dmitry Chigarev (dchigarev) ChangesThis PR adds A similiar PR for Patch is 28.96 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/163071.diff 3 Files Affected:
diff --git a/mlir/lib/Conversion/VectorToXeGPU/VectorToXeGPU.cpp b/mlir/lib/Conversion/VectorToXeGPU/VectorToXeGPU.cpp
index e2c7d803e5a5e..2e365ec692c2e 100644
--- a/mlir/lib/Conversion/VectorToXeGPU/VectorToXeGPU.cpp
+++ b/mlir/lib/Conversion/VectorToXeGPU/VectorToXeGPU.cpp
@@ -97,6 +97,20 @@ static LogicalResult transferPreconditions(PatternRewriter &rewriter,
return success();
}
+// Extract cache hints from the op attributes if available.
+static void getOpCacheHints(Operation *op,
+ SmallVector<xegpu::CachePolicyAttr, 3> &hints) {
+ assert(hints.size() == 3 &&
+ "Expecting a vector of size 3 for l1, l2, l3 hints.");
+ // get l1, l2, l3 hints from attributes if available.
+ if (auto l1Attr = op->getAttrOfType<xegpu::CachePolicyAttr>("l1_hint"))
+ hints[0] = l1Attr;
+ if (auto l2Attr = op->getAttrOfType<xegpu::CachePolicyAttr>("l2_hint"))
+ hints[1] = l2Attr;
+ if (auto l3Attr = op->getAttrOfType<xegpu::CachePolicyAttr>("l3_hint"))
+ hints[2] = l3Attr;
+}
+
static xegpu::CreateNdDescOp
createNdDescriptor(PatternRewriter &rewriter, Location loc,
xegpu::TensorDescType descType, TypedValue<MemRefType> src,
@@ -374,22 +388,30 @@ static Value computeOffsets(PatternRewriter &rewriter, OpType gatScatOp,
arith::AddIOp::create(rewriter, loc, baseOffset, offsetContrib);
}
Value indices = gatScatOp.getIndices();
+ // Extract indices layout and propagate it to all 'vector' ops created here
+ auto indicesLayout = mlir::xegpu::getDistributeLayoutAttr(indices);
VectorType vecType = cast<VectorType>(indices.getType());
- Value strideVector =
- vector::BroadcastOp::create(rewriter, loc, vecType, strides.back())
- .getResult();
- Value stridedIndices =
- arith::MulIOp::create(rewriter, loc, strideVector, indices).getResult();
-
- Value baseVector =
- vector::BroadcastOp::create(
- rewriter, loc,
- VectorType::get(vecType.getShape(), rewriter.getIndexType()),
- baseOffset)
- .getResult();
- return arith::AddIOp::create(rewriter, loc, baseVector, stridedIndices)
- .getResult();
+ auto strideVector =
+ vector::BroadcastOp::create(rewriter, loc, vecType, strides.back());
+ mlir::xegpu::setDistributeLayoutAttr(strideVector->getOpResult(0),
+ indicesLayout);
+
+ auto stridedIndices =
+ arith::MulIOp::create(rewriter, loc, strideVector.getResult(), indices);
+ mlir::xegpu::setDistributeLayoutAttr(stridedIndices->getOpResult(0),
+ indicesLayout);
+
+ auto baseVector = vector::BroadcastOp::create(
+ rewriter, loc,
+ VectorType::get(vecType.getShape(), rewriter.getIndexType()), baseOffset);
+ mlir::xegpu::setDistributeLayoutAttr(baseVector->getOpResult(0),
+ indicesLayout);
+
+ auto result = arith::AddIOp::create(rewriter, loc, baseVector.getResult(),
+ stridedIndices.getResult());
+ mlir::xegpu::setDistributeLayoutAttr(result->getOpResult(0), indicesLayout);
+ return result.getResult();
}
template <
@@ -616,16 +638,39 @@ struct GatherLowering : public OpRewritePattern<vector::GatherOp> {
computeOffsets(rewriter, gatherOp, meta.first, meta.second);
Value flatMemref = memrefToIndexPtr(gatherOp, rewriter);
+ auto numOffsets = gatherOp.getOffsets().size();
+ auto layoutRes = mlir::xegpu::getDistributeLayoutAttr(gatherOp.getResult());
+ auto layoutIndices = mlir::xegpu::getDistributeLayoutAttr(
+ gatherOp->getOpOperand(numOffsets + 1));
+ auto layoutMask = mlir::xegpu::getDistributeLayoutAttr(
+ gatherOp->getOpOperand(numOffsets + 2));
+ auto layoutPassThru = mlir::xegpu::getDistributeLayoutAttr(
+ gatherOp->getOpOperand(numOffsets + 3));
+
+ SmallVector<xegpu::CachePolicyAttr, 3> cacheHints{xegpu::CachePolicyAttr{},
+ xegpu::CachePolicyAttr{},
+ xegpu::CachePolicyAttr{}};
+ getOpCacheHints(gatherOp, cacheHints);
auto xeGatherOp = xegpu::LoadGatherOp::create(
rewriter, loc, vectorType, flatMemref, localOffsets, gatherOp.getMask(),
/*chunk_size=*/IntegerAttr{},
- /*l1_hint=*/xegpu::CachePolicyAttr{},
- /*l2_hint=*/xegpu::CachePolicyAttr{},
- /*l3_hint=*/xegpu::CachePolicyAttr{});
+ /*l1_hint=*/cacheHints[0],
+ /*l2_hint=*/cacheHints[1],
+ /*l3_hint=*/cacheHints[2]);
+ mlir::xegpu::setDistributeLayoutAttr(xeGatherOp->getOpResult(0), layoutRes);
+ mlir::xegpu::setDistributeLayoutAttr(xeGatherOp->getOpOperand(1),
+ layoutIndices);
+ mlir::xegpu::setDistributeLayoutAttr(xeGatherOp->getOpOperand(2),
+ layoutMask);
auto selectOp =
arith::SelectOp::create(rewriter, loc, gatherOp.getMask(),
xeGatherOp.getResult(), gatherOp.getPassThru());
+ mlir::xegpu::setDistributeLayoutAttr(selectOp->getOpOperand(0), layoutMask);
+ mlir::xegpu::setDistributeLayoutAttr(selectOp->getOpOperand(2),
+ layoutPassThru);
+ mlir::xegpu::setDistributeLayoutAttr(selectOp->getOpResult(0), layoutRes);
+
rewriter.replaceOp(gatherOp, selectOp.getResult());
return success();
}
@@ -650,12 +695,28 @@ struct ScatterLowering : public OpRewritePattern<vector::ScatterOp> {
computeOffsets(rewriter, scatterOp, meta.first, meta.second);
Value flatMemref = memrefToIndexPtr(scatterOp, rewriter);
- xegpu::StoreScatterOp::create(rewriter, loc, scatterOp.getValueToStore(),
- flatMemref, localOffsets, scatterOp.getMask(),
- /*chunk_size=*/IntegerAttr{},
- /*l1_hint=*/xegpu::CachePolicyAttr{},
- /*l2_hint=*/xegpu::CachePolicyAttr{},
- /*l3_hint=*/xegpu::CachePolicyAttr{});
+ auto numOffsets = scatterOp.getOffsets().size();
+ auto layoutIndices = mlir::xegpu::getDistributeLayoutAttr(
+ scatterOp->getOpOperand(numOffsets + 1));
+ auto layoutMask = mlir::xegpu::getDistributeLayoutAttr(
+ scatterOp->getOpOperand(numOffsets + 2));
+ auto layoutVal = mlir::xegpu::getDistributeLayoutAttr(
+ scatterOp->getOpOperand(numOffsets + 3));
+ SmallVector<xegpu::CachePolicyAttr, 3> cacheHints{xegpu::CachePolicyAttr{},
+ xegpu::CachePolicyAttr{},
+ xegpu::CachePolicyAttr{}};
+ getOpCacheHints(scatterOp, cacheHints);
+ auto storeOp = xegpu::StoreScatterOp::create(
+ rewriter, loc, scatterOp.getValueToStore(), flatMemref, localOffsets,
+ scatterOp.getMask(),
+ /*chunk_size=*/IntegerAttr{},
+ /*l1_hint=*/cacheHints[0],
+ /*l2_hint=*/cacheHints[1],
+ /*l3_hint=*/cacheHints[2]);
+ mlir::xegpu::setDistributeLayoutAttr(storeOp->getOpOperand(0), layoutVal);
+ mlir::xegpu::setDistributeLayoutAttr(storeOp->getOpOperand(2),
+ layoutIndices);
+ mlir::xegpu::setDistributeLayoutAttr(storeOp->getOpOperand(3), layoutMask);
rewriter.eraseOp(scatterOp);
return success();
}
diff --git a/mlir/test/Conversion/VectorToXeGPU/gather-to-xegpu.mlir b/mlir/test/Conversion/VectorToXeGPU/gather-to-xegpu.mlir
index 2a319869a7b06..cb4cef9724da8 100644
--- a/mlir/test/Conversion/VectorToXeGPU/gather-to-xegpu.mlir
+++ b/mlir/test/Conversion/VectorToXeGPU/gather-to-xegpu.mlir
@@ -249,3 +249,188 @@ gpu.func @non_unit_inner_stride_3D(
// CHECK: %[[RES:.+]] = arith.select %[[MASK]], %[[V]], %[[PASS]] : vector<8xi1>, vector<8xf32>
// CHECK: gpu.return %[[RES]] : vector<8xf32>
}
+
+// -----
+
+gpu.module @xevm_module {
+// Layouts are only specified for the gather op itself.
+gpu.func @load_dynamic_layout_operands(%source: memref<?x?xf32>,
+ %off0: index, %off1: index,
+ %indices: vector<8x16xindex>, %mask: vector<8x16xi1>,
+ %pass_thru: vector<8x16xf32>) -> vector<8x16xf32> {
+ %res = vector.gather %source[%off0, %off1][%indices], %mask,
+ %pass_thru {
+ layout_result_0 = #xegpu.layout<sg_layout = [0]>,
+ layout_operand_3 = #xegpu.layout<sg_layout = [1]>,
+ layout_operand_4 = #xegpu.layout<sg_layout = [2]>,
+ layout_operand_5 = #xegpu.layout<sg_layout = [3]>
+ } : memref<?x?xf32>, vector<8x16xindex>, vector<8x16xi1>, vector<8x16xf32> into vector<8x16xf32>
+ gpu.return %res : vector<8x16xf32>
+}
+// CHECK-LABEL: @load_dynamic_layout_operands(
+// CHECK-SAME: %[[SRC:.+]]: memref<?x?xf32>,
+// CHECK-SAME: %[[OFF1:.+]]: index, %[[OFF2:.+]]: index,
+// CHECK-SAME: %[[INDICES:.+]]: vector<8x16xindex>, %[[MASK:.+]]: vector<8x16xi1>, %[[PASS:.+]]: vector<8x16xf32>) -> vector<8x16xf32> {
+// %indices producer doesn't have a layout, so as 'broadcast/add' ops computing linear index.
+// CHECK: %[[SPLAT:.+]] = vector.broadcast {{.*}} : index to vector<8x16xindex>
+// CHECK: %[[LIN_IDX:.+]] = arith.addi %[[SPLAT]], {{.*}} : vector<8x16xindex>
+// CHECK: %[[VEC:.+]] = xegpu.load %[[BASE_I64:.+]]{{\[}}%[[LIN_IDX]]{{\]}}, %[[MASK]]
+// CHECK-SAME: {layout_operand_1 = #xegpu.layout<sg_layout = [1]>, layout_operand_2 = #xegpu.layout<sg_layout = [2]>,
+// CHECK-SAME: layout_result_0 = #xegpu.layout<sg_layout = [0]>}
+// CHECK: %[[RES:.+]] = arith.select {{[^{]*}}
+// CHECK-SAME: {{{[^}]*}}layout_operand_0 = #xegpu.layout<sg_layout = [2]>,
+// CHECK-SAME: {{[^}]*}}layout_operand_2 = #xegpu.layout<sg_layout = [3]>,
+// CHECK-SAME: {{[^}]*}}layout_result_0 = #xegpu.layout<sg_layout = [0]>} : vector<8x16xi1>, vector<8x16xf32>
+}
+
+// -----
+
+gpu.module @xevm_module {
+gpu.func @load_dynamic_layout_mixed(%source: memref<?x?x?xf32>,
+ %off0: index, %off1: index, %off2: index,
+ %mask: vector<8x16xi1>) -> vector<8x16xf32> {
+ %pass_thru = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [0]>} dense<0.000000e+00> : vector<8x16xf32>
+ %cst_1 = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [1]>} dense<[[0], [32], [64], [96], [128], [160], [192], [224]]> : vector<8x1xindex>
+ %cst_2 = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [2]>} dense<[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]]> : vector<1x16xindex>
+ %0 = vector.broadcast %cst_1 {layout_result_0 = #xegpu.layout<sg_layout = [3]>} : vector<8x1xindex> to vector<8x16xindex>
+ %1 = vector.broadcast %cst_2 {layout_result_0 = #xegpu.layout<sg_layout = [4]>} : vector<1x16xindex> to vector<8x16xindex>
+ %2 = arith.addi %0, %1 {layout_result_0 = #xegpu.layout<sg_layout = [5]>} : vector<8x16xindex>
+
+ %res = vector.gather %source[%off0, %off1, %off2][%2], %mask,
+ %pass_thru {
+ layout_result_0 = #xegpu.layout<sg_layout = [6]>,
+ layout_operand_5 = #xegpu.layout<sg_layout = [7]>
+ } : memref<?x?x?xf32>, vector<8x16xindex>, vector<8x16xi1>, vector<8x16xf32> into vector<8x16xf32>
+ %res2 = arith.addf %res, %pass_thru : vector<8x16xf32>
+ gpu.return %res2 : vector<8x16xf32>
+}
+// CHECK-LABEL: @load_dynamic_layout_mixed(
+// CHECK-SAME: %[[SRC:.+]]: memref<?x?x?xf32>,
+// CHECK-SAME: %[[OFF1:.+]]: index, %[[OFF2:.+]]: index, %[[OFF3:.+]]: index,
+// CHECK-SAME: %[[MASK:.+]]: vector<8x16xi1>) -> vector<8x16xf32> {
+// CHECK: %[[PASS_THRU:.+]] = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [0]>} dense<0.000000e+00> : vector<8x16xf32>
+// Verify that linear-indices computation uses layout from the 'indices' producer op (%2).
+// CHECK: %[[SPLAT:.+]] = vector.broadcast {{.*}} {layout_result_0 = #xegpu.layout<sg_layout = [5]>} : index to vector<8x16xindex>
+// CHECK: %[[LIN_IDX:.+]] = arith.addi %[[SPLAT]], {{.*}} {layout_result_0 = #xegpu.layout<sg_layout = [5]>} : vector<8x16xindex>
+// CHECK: %[[VEC:.+]] = xegpu.load %[[BASE_I64:.+]]{{\[}}%[[LIN_IDX]]{{\]}}, %[[MASK]]
+// CHECK-SAME: {{{[^}]*}}layout_operand_2 = #xegpu.layout<sg_layout = [7]>
+// CHECK-SAME: {{[^}]*}}layout_result_0 = #xegpu.layout<sg_layout = [6]>}
+// CHECK: %[[RES:.+]] = arith.select {{[^{]*}}
+// CHECK-SAME: {{{[^}]*}}layout_operand_0 = #xegpu.layout<sg_layout = [7]>,
+// CHECK-SAME: {{[^}]*}}layout_result_0 = #xegpu.layout<sg_layout = [6]>} : vector<8x16xi1>, vector<8x16xf32>
+}
+
+
+// -----
+
+gpu.module @xevm_module {
+gpu.func @load_static_layout_mixed(%source: memref<8x16x32xf32>,
+ %off0: index, %off1: index, %off2: index,
+ %mask: vector<8x16xi1>) -> vector<8x16xf32> {
+ %pass_thru = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [0]>} dense<0.000000e+00> : vector<8x16xf32>
+ %cst_1 = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [1]>} dense<[[0], [32], [64], [96], [128], [160], [192], [224]]> : vector<8x1xindex>
+ %cst_2 = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [2]>} dense<[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]]> : vector<1x16xindex>
+ %0 = vector.broadcast %cst_1 {layout_result_0 = #xegpu.layout<sg_layout = [3]>} : vector<8x1xindex> to vector<8x16xindex>
+ %1 = vector.broadcast %cst_2 {layout_result_0 = #xegpu.layout<sg_layout = [4]>} : vector<1x16xindex> to vector<8x16xindex>
+ %2 = arith.addi %0, %1 {layout_result_0 = #xegpu.layout<sg_layout = [5]>} : vector<8x16xindex>
+
+ %res = vector.gather %source[%off0, %off1, %off2][%2], %mask,
+ %pass_thru {
+ layout_result_0 = #xegpu.layout<sg_layout = [6]>,
+ layout_operand_5 = #xegpu.layout<sg_layout = [7]>
+ } : memref<8x16x32xf32>, vector<8x16xindex>, vector<8x16xi1>, vector<8x16xf32> into vector<8x16xf32>
+ %res2 = arith.addf %res, %pass_thru : vector<8x16xf32>
+ gpu.return %res2 : vector<8x16xf32>
+}
+// CHECK-LABEL: @load_static_layout_mixed(
+// CHECK-SAME: %[[SRC:.+]]: memref<8x16x32xf32>,
+// CHECK-SAME: %[[OFF1:.+]]: index, %[[OFF2:.+]]: index, %[[OFF3:.+]]: index,
+// CHECK-SAME: %[[MASK:.+]]: vector<8x16xi1>) -> vector<8x16xf32> {
+// CHECK: %[[PASS_THRU:.+]] = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [0]>} dense<0.000000e+00> : vector<8x16xf32>
+// Verify that linear-indices computation uses layout from the 'indices' producer op (%2).
+// CHECK: %[[SPLAT:.+]] = vector.broadcast {{.*}} {layout_result_0 = #xegpu.layout<sg_layout = [5]>} : index to vector<8x16xindex>
+// CHECK: %[[LIN_IDX:.+]] = arith.addi %[[SPLAT]], {{.*}} {layout_result_0 = #xegpu.layout<sg_layout = [5]>} : vector<8x16xindex>
+// CHECK: %[[VEC:.+]] = xegpu.load %[[BASE_I64:.+]]{{\[}}%[[LIN_IDX]]{{\]}}, %[[MASK]]
+// CHECK-SAME: {{{[^}]*}}layout_operand_2 = #xegpu.layout<sg_layout = [7]>
+// CHECK-SAME: {{[^}]*}}layout_result_0 = #xegpu.layout<sg_layout = [6]>}
+// CHECK: %[[RES:.+]] = arith.select {{[^{]*}}
+// CHECK-SAME: {{{[^}]*}}layout_operand_0 = #xegpu.layout<sg_layout = [7]>,
+// CHECK-SAME: {{[^}]*}}layout_result_0 = #xegpu.layout<sg_layout = [6]>} : vector<8x16xi1>, vector<8x16xf32>
+}
+
+// -----
+
+gpu.module @xevm_module {
+gpu.func @load_dynamic_layout_mixed_override(%source: memref<?x?x?xf32>,
+ %off0: index, %off1: index, %off2: index,
+ %mask: vector<8x16xi1>) -> vector<8x16xf32> {
+ %pass_thru = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [0]>} dense<0.000000e+00> : vector<8x16xf32>
+ %cst_1 = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [1]>} dense<[[0], [32], [64], [96], [128], [160], [192], [224]]> : vector<8x1xindex>
+ %cst_2 = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [2]>} dense<[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]]> : vector<1x16xindex>
+ %0 = vector.broadcast %cst_1 {layout_result_0 = #xegpu.layout<sg_layout = [3]>} : vector<8x1xindex> to vector<8x16xindex>
+ %1 = vector.broadcast %cst_2 {layout_result_0 = #xegpu.layout<sg_layout = [4]>} : vector<1x16xindex> to vector<8x16xindex>
+ %2 = arith.addi %0, %1 {layout_result_0 = #xegpu.layout<sg_layout = [5]>} : vector<8x16xindex>
+
+ %res = vector.gather %source[%off0, %off1, %off2][%2], %mask,
+ %pass_thru {
+ layout_result_0 = #xegpu.layout<sg_layout = [6]>,
+ layout_operand_4 = #xegpu.layout<sg_layout = [99]>, // overriding %2's layout
+ layout_operand_5 = #xegpu.layout<sg_layout = [7]>
+ } : memref<?x?x?xf32>, vector<8x16xindex>, vector<8x16xi1>, vector<8x16xf32> into vector<8x16xf32>
+ %res2 = arith.addf %res, %pass_thru : vector<8x16xf32>
+ gpu.return %res2 : vector<8x16xf32>
+}
+// CHECK-LABEL: @load_dynamic_layout_mixed_override(
+// CHECK-SAME: %[[SRC:.+]]: memref<?x?x?xf32>,
+// CHECK-SAME: %[[OFF1:.+]]: index, %[[OFF2:.+]]: index, %[[OFF3:.+]]: index,
+// CHECK-SAME: %[[MASK:.+]]: vector<8x16xi1>) -> vector<8x16xf32> {
+// CHECK: %[[PASS_THRU:.+]] = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [0]>} dense<0.000000e+00> : vector<8x16xf32>
+// Verify that linear-indices computation uses layout from the 'indices' producer op (%2)
+// and not it's overriden version from the scatter_op (sg_layout = [99])
+// CHECK: %[[SPLAT:.+]] = vector.broadcast {{.*}} {layout_result_0 = #xegpu.layout<sg_layout = [5]>} : index to vector<8x16xindex>
+// CHECK: %[[LIN_IDX:.+]] = arith.addi %[[SPLAT]], {{.*}} {layout_result_0 = #xegpu.layout<sg_layout = [5]>} : vector<8x16xindex>
+// CHECK: %[[VEC:.+]] = xegpu.load %[[BASE_I64:.+]]{{\[}}%[[LIN_IDX]]{{\]}}, %[[MASK]]
+// CHECK-SAME: {layout_operand_1 = #xegpu.layout<sg_layout = [99]>, layout_operand_2 = #xegpu.layout<sg_layout = [7]>
+// CHECK-SAME: {{[^}]*}}layout_result_0 = #xegpu.layout<sg_layout = [6]>}
+// CHECK: %[[RES:.+]] = arith.select {{[^{]*}}
+// CHECK-SAME: {{{[^}]*}}layout_operand_0 = #xegpu.layout<sg_layout = [7]>,
+// CHECK-SAME: {{[^}]*}}layout_result_0 = #xegpu.layout<sg_layout = [6]>} : vector<8x16xi1>, vector<8x16xf32>
+}
+
+// -----
+
+gpu.module @xevm_module {
+gpu.func @load_with_cache_hints(%source: memref<8x16x32xf32>,
+ %off1: index, %off2: index, %off3: index,
+ %indices: vector<8xindex>, %mask: vector<8xi1>,
+ %pass_thru: vector<8xf32>) -> vector<8xf32> {
+ %0 = vector.gather %source[%off1, %off2, %off3][%indices], %mask,
+ %pass_thru {
+ l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>,
+ l3_hint = #xegpu.cache_hint<streaming>
+ } : memref<8x16x32xf32>, vector<8xindex>, vector<8xi1>, vector<8xf32> into vector<8xf32>
+ gpu.return %0 : vector<8xf32>
+}
+// CHECK-LABEL: @load_with_cache_hints(
+// CHECK: xegpu.load {{[^<]*}}
+// CHECK-SAME: <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, l3_hint = #xegpu.cache_hint<streaming>}>
+}
+
+// -----
+
+gpu.module @xevm_module {
+gpu.func @load_with_partial_cache_hints(%source: memref<8x16x32xf32>,
+ %off1: index, %off2: index, %off3: index,
+ %indices: vector<8xindex>, %mask: vector<8xi1>,
+ %pass_thru: vector<8xf32>) -> vector<8xf32> {
+ %0 = vector.gather %source[%off1, %off2, %off3][%indices], %mask,
+ %pass_thru {
+ l1_hint = #xegpu.cache_hint<cached>,
+ l3_hint = #xegpu.cache_hint<streaming>
+ } : memref<8x16x32xf32>, vector<8xindex>, vector<8xi1>, vector<8xf32> into vector<8xf32>
+ gpu.return %0 : vector<8xf32>
+}
+// CHECK-LABEL: @load_with_partial_cache_hints(
+// CHECK: xegpu.load {{[^<]*}}
+// CHECK-SAME: <{l1_hint = #xegpu.cache_hint<cached>, l3_hint = #xegpu.cache_hint<streaming>}>
+}
diff --git a/mlir/test/Conversion/VectorToXeGPU/scatter-to-xegpu.mlir b/mlir/test/Conversion/VectorToXeGPU/scatter-to-xegpu.mlir
index ffd3f170c0fad..9393d88e0f54c 100644
--- a/mlir/test/Conversion/VectorToXeGPU/scatter-to-xegpu.mlir
+++ b/mlir/test/Conversion/VectorToXeGPU/scatter-to-xegpu.mlir
@@ -204,3 +204,152 @@ gpu.func @scatter_into_subview(%vals: vector<8xf16>,
// CHECK: xegpu.store %[[VALS]], %[[BASE_I64]]{{\[}}%[[LIN]]{{\]}}, %[[MASK]] : vector<8xf16>, i64, vector<8xindex>, vector<8xi1>
// CHECK: gpu.return
}
+
+// -----
+
+gpu.module @xevm_module {
+gpu.func @store_dynamic_layout_operands(%vec: vector<8x16xf32>, %source: memref<?x?xf32>,
+ %off0: index, %off1: index,...
[truncated]
|
|
||
auto selectOp = | ||
arith::SelectOp::create(rewriter, loc, gatherOp.getMask(), | ||
xeGatherOp.getResult(), gatherOp.getPassThru()); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Just to double-check, the layout isn't assigned to the second operand (LoadGather) as it's already in the producer's result.
I assume it's left to the propagation to fill the gap? Any drawbacks in assigning layout in both places?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Just to double-check, the layout isn't assigned to the second operand (LoadGather) as it's already in the producer's result
Right, I thought that's enough. There seems to be no drawbacks though from assigning layout in both places. Applied layout in both places in the last commit just in case
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
setting the operand layout is done at the client of layout propagation result. So I think there is no need to update layout_operand[_]
here
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is it always the case? Say, the value to store comes as a function's argument (our func is not inlined yet) and it's impossible to determine the producer but it's possible to determine the layout from {layout_operand_i}
attribute. Should we support such cases? Are there any negative side-effects from setting a layout_operand_i
even if we can access the layout from layout_result_i
of the value producer?
Signed-off-by: Dmitry Chigarev <[email protected]>
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Minor suggestion
LGTM but I'll let sb else double check the layout assignments.
Signed-off-by: dchigarev <[email protected]>
1a160b8
to
3afe5d5
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
ignore this comment. still reviewing.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can we extend the PR to cover transfer_read/transfer_write to xegpu.load_nd/store_nd also? You only need to carry cache hint and layout attribute to anchor ops, and you don't need to extend op definition since the layout needs to set to the tensor descriptor operand of load_nd/store_nd.
// Extract indices layout and propagate it to all 'vector' ops created here | ||
auto indicesLayout = mlir::xegpu::getDistributeLayoutAttr(indices); | ||
VectorType vecType = cast<VectorType>(indices.getType()); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We should use the propagation pass to properly set up the layout attributes for non-anchor ops.
/*l1_hint=*/cacheHints[0], | ||
/*l2_hint=*/cacheHints[1], | ||
/*l3_hint=*/cacheHints[2]); | ||
xegpu::setDistributeLayoutAttr(xeGatherOp->getOpResult(0), layoutRes); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We should expand xegpu.load/store with optional attribute DistributeLayoutAttr (like loadmatrix op definition), and set the operation's attribute only. The propagation process will propagate it to other ops.
@@ -616,16 +636,34 @@ struct GatherLowering : public OpRewritePattern<vector::GatherOp> { | |||
computeOffsets(rewriter, gatherOp, meta.first, meta.second); | |||
Value flatMemref = memrefToIndexPtr(gatherOp, rewriter); | |||
|
|||
auto layoutRes = xegpu::getDistributeLayoutAttr(gatherOp.getResult()); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
All three layouts should be exactly the same.
We can take the layout from Result vector, and set to the store op's layout attribute (need to expand the op definition to make the attribute persistent, not lost after optimization passes).
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I found at least one scenario in our test cases where not all operands of xegpu.store
have the same layout.
It also looks quite confusing in case of xegpu.load
to have mixed layout_operand_*
and layout
attribute:
%3 = xegpu.load %src[%offset], %1 <{chunk_size=8}>
{
layout_operand_1 = #xegpu.layout<lane_layout = [16], lane_data = [1]>,
layout = #xegpu.layout<
lane_layout = [16, 1], lane_data = [1, 2]> // layout for what??
}
: memref<256xf16>, vector<16xindex>, vector<16xi1> -> vector<16x8xf16>
// -----
%3 = xegpu.load %src[%offset], %1 <{chunk_size=8}>
{
layout_operand_1 = #xegpu.layout<lane_layout = [16], lane_data = [1]>,
layout_result_0 = #xegpu.layout<
lane_layout = [16, 1], lane_data = [1, 2]> // the purpose of the layout is very clear
}
: memref<256xf16>, vector<16xindex>, vector<16xi1> -> vector<16x8xf16>
Given that, I don't think we need to have a separate layout attribute for xegpu load/store ops (or we have to rethink it once again, and make it not like load_matrix/store_matrix
layout attribute).
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
At the entry XeGPU IR, we need to set the layout to anchor op, and rely on the propagation pass to propagate the layout to all values. The anchor op include: load/store, load_matrix/store_matrix, load_nd/store_nd, and dpas, convert_layout. The layout describes the layout for the tensor tile: for memory operation, it describes the memory operand (like memref, mem_desc, nd_tdesc), for dpas, it describes the vector operands.
The layout propagated are temporarily attributes and can be lost during IR transformation or lowering. But the anchor op defined layout attributes are permanents and we rely on these attributes being set up properly so able to recover in case user compose xegpu passes with their own passes.
The example you show above actually looks fine to me, as long as the propogation rules decides to drop one dimension for the mask and index and keep the tensor tile layout as 2d. It does look a bit complex, but I don't expect this kind of layout is exposed to user since chunkload should be lower-level representation for memory coalesce or load_matrix lowering.
So I still suggest changing this PR and just set the layout attribute according to the tensor tile's layout for anchor ops only and remove the attributes setting for other ops and operands.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM % existing comments
|
||
auto selectOp = | ||
arith::SelectOp::create(rewriter, loc, gatherOp.getMask(), | ||
xeGatherOp.getResult(), gatherOp.getPassThru()); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
setting the operand layout is done at the client of layout propagation result. So I think there is no need to update layout_operand[_]
here
// CHECK: %[[SPLAT:.+]] = vector.broadcast {{.*}} {layout_result_0 = #xegpu.layout<sg_layout = [5]>} : index to vector<8x16xindex> | ||
// CHECK: %[[LIN_IDX:.+]] = arith.addi %[[SPLAT]], {{.*}} {layout_result_0 = #xegpu.layout<sg_layout = [5]>} : vector<8x16xindex> | ||
// CHECK: %[[VEC:.+]] = xegpu.load %[[BASE_I64:.+]]{{\[}}%[[LIN_IDX]]{{\]}}, %[[MASK]] | ||
// CHECK-SAME: {{{[^}]*}}layout_operand_2 = #xegpu.layout<sg_layout = [7]> |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
similar to my previous comment operand layouts are not needed.
|
||
auto layoutRes = xegpu::getDistributeLayoutAttr(gatherOp.getResult()); | ||
auto layoutIndices = | ||
xegpu::getDistributeLayoutAttr(gatherOp.getIndicesMutable()); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Any reason to use mutable getters?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
otherwise it won't get layout_operand_i
assigned to this operand
Signed-off-by: dchigarev <[email protected]>
Signed-off-by: dchigarev <[email protected]>
@Jianhui-Li added layout/cache hints propagation for the rest of the ops in |
This PR adds
xegpu.layout
andxegpu.cache_hint
attributes propagation from an originalvector
ops to the generatedxegpu.load(_nd)/.store(_nd)
ops inVectorToXeGPU
pass.