From 3ff0d9fda05ab725519a413b078601a7a19c4a47 Mon Sep 17 00:00:00 2001 From: Petr Kurapov Date: Wed, 2 Oct 2024 17:23:55 +0200 Subject: [PATCH] [MLIR][XeGPU] Add sg_map attribute to support Work Item level semantics (#108864) The PR adds an attribute (sg_map) describing the distribution of computation among work items for xegpu operations to be used in lowering passes. The map is attached to the tensor descriptor, so the constructor and the type are updated. Tests check the custom parser & printer. The attribute is optional now, so no other changes required. The complete description of the attribute can be found [here](https://github.com/intel/mlir-extensions/blob/main/docs/rfcs/XeGPU.md#xegpu-attributes-to-support-work-item-level-semantics). --- .../mlir/Dialect/XeGPU/IR/XeGPUAttrs.td | 32 +++++ .../mlir/Dialect/XeGPU/IR/XeGPUTypes.td | 20 +++- mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp | 110 ++++++++++++++++-- mlir/test/Dialect/XeGPU/XeGPUOps.mlir | 24 ++++ 4 files changed, 169 insertions(+), 17 deletions(-) diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td index 26eec0d4f2082..2aaa7fd4221ab 100644 --- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td +++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td @@ -142,4 +142,36 @@ def XeGPU_FenceScopeAttr: let assemblyFormat = "$value"; } +def XeGPU_SGMapAttr : XeGPUAttr<"SGMap", "sg_map"> { + let summary = [{ + Describes the mapping between work item (WI) and the 2D tensor specified by the tensor descriptor. + }]; + let description = [{ + To distribute the XeGPU operation to work items, the tensor_desc must be specified with the sg_map + attribute at the tensor description creation time. + Within the `sg_map`, `wi_layout` specifies the layout of work items, + describing the mapping of work items to the tensor. + wi_layout[0] x wi_layout[1] must be equal to the total number of work items within a subgroup. + `wi_data` specifies the minimum number of data elements assigned to each work item for a single distribution. + + E.g., #xegpu.sg_map + In this example, the subgroup has 16 work items in wi_layout=[1, 16], + each accessing 1 element as specified by wi_data=[1, 1]. + + `wi_data[0] * wi_data[1]` can be greater than 1, meaning that each work item operates on multiple elements, + which is eventually lowered to "SIMT-flavor" vector, like SPIR-V vector or llvm vector, or packed to a storage data type. + The multiple elements indicated by `wi_data` can only be from one dimension and must be contiguous in the memory along either dimension. + }]; + let parameters = (ins + ArrayRefParameter<"uint32_t">:$wi_layout, + ArrayRefParameter<"uint32_t">:$wi_data); + + let builders = [ + AttrBuilder<(ins)> + ]; + + let hasCustomAssemblyFormat = 1; + let genVerifyDecl = 1; +} + #endif // MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td index 0ce1211664b5b..d09c5c1870d50 100644 --- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td +++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td @@ -63,7 +63,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", element-type ::= float-type | integer-type | index-type dim-list := (static-dim-list `x`)? static-dim-list ::= decimal-literal `x` decimal-literal - attr-list = (, memory_space = value)? (, arr_len = value)? (, boundary_check = value)? (, scattered = value)? + attr-list = (, memory_space = value)? (, arr_len = value)? (, boundary_check = value)? (, scattered = value)? (, sg_map `<` wi_layout = value, wi_data = value `>`)? ``` Examples: @@ -77,12 +77,16 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", // A TensorDesc with 8x16 f32 elements for a memory region in shared memory space. xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr> + + // A TensorDesc with a sg_map + xegpu.tensor_desc<8x16xf32, #xegpu.sg_map> ``` }]; let parameters = (ins ArrayRefParameter<"int64_t">: $shape, "mlir::Type": $elementType, - OptionalParameter<"mlir::Attribute">: $encoding); + OptionalParameter<"mlir::Attribute">: $encoding, + OptionalParameter<"mlir::Attribute">: $sg_map); let builders = [ TypeBuilderWithInferredContext<(ins @@ -90,14 +94,16 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", "mlir::Type": $elementType, CArg<"int", "1">: $array_length, CArg<"bool", "true">: $boundary_check, - CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space)>, + CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space, + CArg<"mlir::Attribute", "mlir::Attribute()">:$sg_map)>, TypeBuilderWithInferredContext<(ins "llvm::ArrayRef": $shape, "mlir::Type": $elementType, CArg<"int", "1">: $chunk_size, - CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space)> + CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space, + CArg<"mlir::Attribute", "mlir::Attribute()">:$sg_map)> ]; - + let extraClassDeclaration = [{ using TensorType::clone; using mlir::ShapedType::Trait::getElementTypeBitWidth; @@ -121,6 +127,10 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", return llvm::dyn_cast_if_present(getEncoding()); } + SGMapAttr getSGMapAttr() const { + return llvm::dyn_cast_if_present(getSgMap()); + } + xegpu::MemorySpace getMemorySpace() const { auto block_attr = getEncodingAsBlockTensorDescAttr(); if (block_attr && block_attr.getMemorySpace()) diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp index 1dfbaed454c19..eb01b15de75c6 100644 --- a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp +++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp @@ -55,6 +55,77 @@ ScatterTensorDescAttr::get(mlir::MLIRContext *context, return Base::get(context, scopeAttr, chunkSizeAttr); } +//===----------------------------------------------------------------------===// +// XeGPU_SGMapAttr +//===----------------------------------------------------------------------===// +namespace { +template +LogicalResult parseIntArrayField(::mlir::AsmParser &parser, + llvm::SmallVector &result, + llvm::StringRef fieldName) { + if (failed(parser.parseKeyword(fieldName))) { + parser.emitError(parser.getCurrentLocation(), + "unexpected field name. Expected " + fieldName + "."); + return failure(); + } + + if (failed(parser.parseEqual())) { + parser.emitError(parser.getCurrentLocation(), "expected '=' sign."); + return failure(); + } + + auto elemParser = [&]() -> llvm::ParseResult { + uint32_t elem = 0; + auto res = parser.parseInteger(elem); + result.push_back(elem); + return res; + }; + + return parser.parseCommaSeparatedList(AsmParser::Delimiter::Square, + elemParser, fieldName); +} +} // namespace + +mlir::Attribute SGMapAttr::parse(::mlir::AsmParser &parser, + ::mlir::Type attrType) { + if (failed(parser.parseLess())) + return {}; + + llvm::SmallVector wi_layout, wi_data; + if (failed(parseIntArrayField(parser, wi_layout, "wi_layout"))) + return {}; + + if (failed(parser.parseComma())) + return {}; + + if (failed(parseIntArrayField(parser, wi_data, "wi_data"))) + return {}; + + return SGMapAttr::getChecked( + [&]() { return parser.emitError(parser.getNameLoc()); }, + parser.getContext(), wi_layout, wi_data); +} + +void SGMapAttr::print(::mlir::AsmPrinter &printer) const { + printer << "<"; + printer.printKeywordOrString("wi_layout"); + printer << " = [" << getWiLayout() << "], "; + printer.printKeywordOrString("wi_data"); + printer << " = [" << getWiData() << "]"; + printer << ">"; +} + +LogicalResult +SGMapAttr::verify(llvm::function_ref emitError, + llvm::ArrayRef wi_layout, + llvm::ArrayRef wi_data) { + if (wi_layout.size() != 2) + return emitError() << "expected wi_layout of size 2"; + if (wi_data.size() != 2) + return emitError() << "expected wi_data of size 2"; + return success(); +} + //===----------------------------------------------------------------------===// // XeGPU_TensorDescType //===----------------------------------------------------------------------===// @@ -63,6 +134,7 @@ mlir::Type TensorDescType::parse(::mlir::AsmParser &parser) { llvm::SmallVector shape; mlir::Type elementType; mlir::FailureOr encoding; + mlir::FailureOr sg_map; // Parse literal '<' if (parser.parseLess()) @@ -81,14 +153,22 @@ mlir::Type TensorDescType::parse(::mlir::AsmParser &parser) { } // parse optional attributes - if (mlir::succeeded(parser.parseOptionalComma())) { - encoding = mlir::FieldParser::parse(parser); - if (mlir::failed(encoding)) { - parser.emitError( - parser.getCurrentLocation(), - "Failed to parse the attribute field for TensorDescType.\n"); - return {}; + while (mlir::succeeded(parser.parseOptionalComma())) { + mlir::Attribute attr; + ParseResult res = parser.parseAttribute(attr); + if (mlir::succeeded(res)) { + if (mlir::isa(attr)) { + sg_map = attr; + continue; + } + if (mlir::isa(attr)) { + encoding = attr; + continue; + } } + parser.emitError(parser.getCurrentLocation(), + "Failed to parse the attribute.\n"); + return {}; } // Parse literal '>' @@ -96,7 +176,8 @@ mlir::Type TensorDescType::parse(::mlir::AsmParser &parser) { return {}; return TensorDescType::get(parser.getContext(), shape, elementType, - encoding.value_or(mlir::Attribute())); + encoding.value_or(mlir::Attribute()), + sg_map.value_or(mlir::Attribute())); } void TensorDescType::print(::mlir::AsmPrinter &printer) const { @@ -116,25 +197,30 @@ void TensorDescType::print(::mlir::AsmPrinter &printer) const { if (auto encoding = getEncoding()) printer << ", " << encoding; + if (auto sg_map = getSgMap()) + printer << ", " << sg_map; + printer << ">"; } TensorDescType TensorDescType::get(llvm::ArrayRef shape, mlir::Type elementType, int array_length, bool boundary_check, - MemorySpace memory_space) { + MemorySpace memory_space, + mlir::Attribute sg_map) { auto context = elementType.getContext(); auto attr = BlockTensorDescAttr::get(context, memory_space, array_length, boundary_check); - return Base::get(context, shape, elementType, attr); + return Base::get(context, shape, elementType, attr, sg_map); } TensorDescType TensorDescType::get(llvm::ArrayRef shape, mlir::Type elementType, int chunk_size, - MemorySpace memory_space) { + MemorySpace memory_space, + mlir::Attribute sg_map) { auto context = elementType.getContext(); auto attr = ScatterTensorDescAttr::get(context, memory_space, chunk_size); - return Base::get(context, shape, elementType, attr); + return Base::get(context, shape, elementType, attr, sg_map); } } // namespace xegpu diff --git a/mlir/test/Dialect/XeGPU/XeGPUOps.mlir b/mlir/test/Dialect/XeGPU/XeGPUOps.mlir index 6db57aad773aa..a4587faa3345c 100644 --- a/mlir/test/Dialect/XeGPU/XeGPUOps.mlir +++ b/mlir/test/Dialect/XeGPU/XeGPUOps.mlir @@ -13,6 +13,14 @@ gpu.func @test_create_nd_tdesc_vc_1(%src: memref<24x32xf32>) { gpu.return } +// CHECK: gpu.func @test_create_nd_tdesc_with_sg_map(%[[arg0:.*]]: memref<24x32xf32>) { +gpu.func @test_create_nd_tdesc_with_sg_map(%src: memref<24x32xf32>) { + // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map> + %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> + !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map> + gpu.return +} + // CHECK: gpu.func @test_create_nd_tdesc_vc_2(%[[arg0:.*]]: ui64, %[[arg1:.*]]: index, %[[arg2:.*]]: index, %[[arg3:.*]]: index, %[[arg4:.*]]: index) { gpu.func @test_create_nd_tdesc_vc_2(%src: ui64, %w : index, %h : index, %x : index, %y : index) { //CHECK: %[[C:.*]] = arith.constant 1 : index @@ -43,6 +51,13 @@ gpu.func @test_create_nd_tdesc_vc_5(%src: memref<2x24x32xf32, 3>) { gpu.return } +// CHECK: gpu.func @test_create_nd_tdesc_vc_6(%[[arg0:.*]]: memref<24x32xf32>) { +gpu.func @test_create_nd_tdesc_vc_6(%src: memref<24x32xf32>) { + // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr, #xegpu.sg_map + %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr, #xegpu.sg_map> + gpu.return +} + // CHECK: gpu.func @test_prefetch_nd_vc(%[[arg0:.*]]: memref<24x32xf16>) { gpu.func @test_prefetch_nd_vc(%src: memref<24x32xf16>) { // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16> @@ -120,6 +135,15 @@ gpu.func @test_create_tdesc_vc_1(%src: memref) { gpu.return } +// CHECK: gpu.func @test_create_tdesc_vc_with_sg_map(%[[arg0:.*]]: ui64) { +gpu.func @test_create_tdesc_vc_with_sg_map(%src: ui64) { + //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> + %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr, #xegpu.sg_map> + %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr, #xegpu.sg_map> + gpu.return +} + // CHECK: gpu.func @test_prefetch_vc(%[[arg0:.*]]: ui64) { gpu.func @test_prefetch_vc(%src: ui64) { //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>