Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
119 changes: 23 additions & 96 deletions mlir/lib/Dialect/Tensor/IR/TensorInferTypeOpInterfaceImpl.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,24 +16,6 @@
using namespace mlir;
using namespace mlir::tensor;

/// Compute a map that for a given dimension of the expanded type gives the
/// dimension in the collapsed type it maps to. Essentially its the inverse of
/// the `reassocation` maps.
static llvm::DenseMap<int64_t, int64_t>
getExpandedDimToCollapsedDimMap(ArrayRef<AffineMap> reassociation) {
llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim;
for (const auto &map : enumerate(reassociation)) {
unsigned startPos =
cast<AffineDimExpr>(map.value().getResults().front()).getPosition();
unsigned endPos =
cast<AffineDimExpr>(map.value().getResults().back()).getPosition();
for (auto dim : llvm::seq_inclusive(startPos, endPos)) {
expandedDimToCollapsedDim[dim] = map.index();
}
}
return expandedDimToCollapsedDim;
}

/// For reshape op compute the shape at dimension `dimIndex` of the output in
/// terms of shape of the `src`, when the reshape op is a collapsing
/// operation. It is the product of the shape of the collapsed dimensions of the
Expand Down Expand Up @@ -76,86 +58,33 @@ static SmallVector<OpFoldResult, 4> getCollapsedOutputShapeFromInputShape(
}));
}

/// For an expanding reshape op, compute the value for a dimension of the output
/// from the shape of the input.
static OpFoldResult getExpandedOutputDimFromInputShape(
OpBuilder &builder, Location loc, int64_t dimIndex, Value src,
ArrayRef<int64_t> dstStaticShape, ArrayRef<AffineMap> reassociation,
llvm::DenseMap<int64_t, int64_t> &expandedDimToCollapsedDim) {
if (!ShapedType::isDynamic(dstStaticShape[dimIndex])) {
// Static dimension: return Attribute.
return builder.getIndexAttr(dstStaticShape[dimIndex]);
}
unsigned sourceDimPos = expandedDimToCollapsedDim[dimIndex];
unsigned startPos =
cast<AffineDimExpr>(reassociation[sourceDimPos].getResults().front())
.getPosition();
unsigned endPos =
cast<AffineDimExpr>(reassociation[sourceDimPos].getResults().back())
.getPosition();
int64_t linearizedStaticDim = 1;
for (auto d :
llvm::enumerate(dstStaticShape.slice(startPos, endPos - startPos + 1))) {
if (d.index() + startPos == static_cast<unsigned>(dimIndex))
continue;
assert(!ShapedType::isDynamic(d.value()) &&
"single dimension cannot be expanded into multiple dynamic "
"dimensions");
linearizedStaticDim *= d.value();
struct ReifyCollapseShapeOp
: public ReifyRankedShapedTypeOpInterface::ExternalModel<
ReifyCollapseShapeOp, CollapseShapeOp> {
LogicalResult
reifyResultShapes(Operation *op, OpBuilder &b,
ReifiedRankedShapedTypeDims &reifiedReturnShapes) const {
auto loc = op->getLoc();
auto collapseShape = cast<CollapseShapeOp>(op);
reifiedReturnShapes.push_back(getCollapsedOutputShapeFromInputShape(
b, loc, collapseShape.getSrc(),
collapseShape.getResultType().getShape(),
collapseShape.getReassociationMaps()));
return success();
}
OpFoldResult sourceDim =
builder.create<tensor::DimOp>(loc, src, sourceDimPos).getResult();

// Dynamic dimension: return Value.
return affine::makeComposedAffineApply(
builder, loc,
AffineMap::get(
0, 1,
builder.getAffineSymbolExpr(0).floorDiv(linearizedStaticDim)),
sourceDim)
->getResult(0);
}

/// Given the `src` of an expanding reshape op, the reassociation maps and the
/// result type, compute the shape of the result of the reshape.
static SmallVector<OpFoldResult, 4> getExpandedOutputShapeFromInputShape(
OpBuilder &builder, Location loc, Value src,
ArrayRef<int64_t> dstStaticShape, ArrayRef<AffineMap> reassociation) {
llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim =
getExpandedDimToCollapsedDimMap(reassociation);
return llvm::to_vector<4>(llvm::map_range(
llvm::seq<int64_t>(0, dstStaticShape.size()), [&](int64_t dim) {
return getExpandedOutputDimFromInputShape(builder, loc, dim, src,
dstStaticShape, reassociation,
expandedDimToCollapsedDim);
}));
}

static SmallVector<OpFoldResult, 4>
getReshapeOutputShapeFromInputShape(OpBuilder &builder, Location loc, Value src,
ArrayRef<int64_t> dstStaticShape,
ArrayRef<AffineMap> reassocation) {
return dstStaticShape.size() >
static_cast<size_t>(
llvm::cast<ShapedType>(src.getType()).getRank())
? getExpandedOutputShapeFromInputShape(
builder, loc, src, dstStaticShape, reassocation)
: getCollapsedOutputShapeFromInputShape(
builder, loc, src, dstStaticShape, reassocation);
}
};

template <typename OpTy>
struct ReifyExpandOrCollapseShapeOp
: public ReifyRankedShapedTypeOpInterface::ExternalModel<
ReifyExpandOrCollapseShapeOp<OpTy>, OpTy> {
struct ReifyExpandShapeOp
: public ReifyRankedShapedTypeOpInterface::ExternalModel<ReifyExpandShapeOp,
ExpandShapeOp> {
LogicalResult
reifyResultShapes(Operation *op, OpBuilder &b,
ReifiedRankedShapedTypeDims &reifiedReturnShapes) const {
auto loc = op->getLoc();
auto reshapeOp = cast<OpTy>(op);
reifiedReturnShapes.push_back(getReshapeOutputShapeFromInputShape(
b, loc, reshapeOp.getSrc(), reshapeOp.getResultType().getShape(),
reshapeOp.getReassociationMaps()));
auto expandShape = cast<ExpandShapeOp>(op);
SmallVector<OpFoldResult> outputShape = getMixedValues(
expandShape.getStaticOutputShape(), expandShape.getOutputShape(), b);
reifiedReturnShapes.push_back(outputShape);
return success();
}
};
Expand Down Expand Up @@ -202,10 +131,8 @@ struct ReifyPadOp
void mlir::tensor::registerInferTypeOpInterfaceExternalModels(
DialectRegistry &registry) {
registry.addExtension(+[](MLIRContext *ctx, TensorDialect *dialect) {
ExpandShapeOp::attachInterface<
ReifyExpandOrCollapseShapeOp<tensor::ExpandShapeOp>>(*ctx);
CollapseShapeOp::attachInterface<
ReifyExpandOrCollapseShapeOp<tensor::CollapseShapeOp>>(*ctx);
ExpandShapeOp::attachInterface<ReifyExpandShapeOp>(*ctx);
CollapseShapeOp::attachInterface<ReifyCollapseShapeOp>(*ctx);
PadOp::attachInterface<ReifyPadOp>(*ctx);
});
}
7 changes: 2 additions & 5 deletions mlir/test/Dialect/Linalg/resolve-shaped-type-result-dims.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -210,15 +210,12 @@ func.func @dim_reshape_expansion(%arg0 : tensor<6x5x?xf32>, %sz0: index) -> (ind
%3 = tensor.dim %0, %c4 : tensor<2x3x5x4x?x7xf32>
return %1, %2, %3 : index, index, index
}
// CHECK: #[[MAP:.+]] = affine_map<()[s0] -> (s0 floordiv 28)>
// CHECK: func @dim_reshape_expansion
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<6x5x?xf32>
// CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: index
// CHECK-DAG: %[[C3:.+]] = arith.constant 3 : index
// CHECK-DAG: %[[C4:.+]] = arith.constant 4 : index
// CHECK: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C2]]
// CHECK: %[[D1:.+]] = affine.apply #[[MAP]]()[%[[D0]]]
// CHECK: return %[[C3]], %[[C4]], %[[D1]]
// CHECK: return %[[C3]], %[[C4]], %[[ARG1]]

// -----

Expand Down
8 changes: 2 additions & 6 deletions mlir/test/Dialect/Tensor/fold-empty-op.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@ module attributes {transform.with_named_sequence} {
}
}

// CHECK: #[[$MAP:.+]] = affine_map<()[s0] -> (s0 floordiv 28)>
// CHECK: #[[$MAP2:.+]] = affine_map<()[s0] -> (s0 * 28)>

func.func @empty_reshape_expansion(%arg0 : index, %sz0: index) -> tensor<2x3x5x4x?x7xf32> {
Expand All @@ -19,11 +18,8 @@ func.func @empty_reshape_expansion(%arg0 : index, %sz0: index) -> tensor<2x3x5x4
return %1 : tensor<2x3x5x4x?x7xf32>
}
// CHECK-LABEL: func @empty_reshape_expansion
// CHECK-SAME: %[[ARG0:.+]]: index
// CHECK: %[[OLD_INIT:.+]] = tensor.empty(%{{.*}}) : tensor<6x5x?xf32>
// CHECK-NEXT: %[[DIM:.*]] = tensor.dim %[[OLD_INIT]]
// CHECK-NEXT: %[[D:.+]] = affine.apply #[[$MAP]]()[%[[DIM]]]
// CHECK-NEXT: %[[INIT:.+]] = tensor.empty(%[[D]])
// CHECK-SAME: %[[ARG0:.+]]: index, %[[ARG1:.+]]: index
// CHECK-NEXT: %[[INIT:.+]] = tensor.empty(%[[ARG1]])
// CHECK-NEXT: return %[[INIT]]

func.func @empty_reshape_collapse(%arg0 : index) -> tensor<6x5x?xf32> {
Expand Down