diff --git a/mlir/test/Integration/Dialect/Vector/CPU/ArmSVE/vector-contract-i8mm.mlir b/mlir/test/Integration/Dialect/Vector/CPU/ArmSVE/vector-contract-i8mm.mlir new file mode 100644 index 0000000000000..5f6e8e4c30892 --- /dev/null +++ b/mlir/test/Integration/Dialect/Vector/CPU/ArmSVE/vector-contract-i8mm.mlir @@ -0,0 +1,463 @@ +// REQUIRES: arm-emulator + +// DEFINE: %{compile} = mlir-opt %s \ +// DEFINE: --convert-vector-to-scf --convert-scf-to-cf --convert-vector-to-llvm='enable-arm-sve enable-arm-i8mm' \ +// DEFINE: --expand-strided-metadata --convert-to-llvm --finalize-memref-to-llvm \ +// DEFINE: --lower-affine --convert-arith-to-llvm --reconcile-unrealized-casts \ +// DEFINE: -o %t + +// DEFINE: %{entry_point} = main + +// DEFINE: %{run} = %mcr_aarch64_cmd %t -e %{entry_point} -entry-point-result=void --march=aarch64 --mattr="+sve,+i8mm" \ +// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils,%native_mlir_arm_runner_utils + +// RUN: rm -f %t && %{compile} && FileCheck %s --input-file=%t -check-prefix CHECK-IR && %{run} | FileCheck %s + +#packed_maps = [ + affine_map<(m, n, k) -> (m, k)>, + affine_map<(m, n, k) -> (n, k)>, + affine_map<(m, n, k) -> (m, n)> +] + +// +// Test the lowering of `vector.contract` using the `LowerContractionToSVEI8MMPattern` +// +// The operation that the `vector.contract` in this test performs is matrix +// multiplication with accumulate +// OUT = ACC + LHS * RHS +// of two 8-bit integer matrices LHS and RHS, and a 32-bit integer matrix ACC +// into a 32-bit integer matrix OUT. The LHS and RHS can be sign- or zero- extended, +// this test covers all the possible variants. +// +// Tested are calculations as well as that the relevant `ArmSVE` dialect +// operations ('arm_sve.smmla`, arm_sve.ummla`, etc) are emitted. +// +// That pattern above handles (therefore this test prepares) input/output vectors with +// specific shapes: +// * LHS: vector +// * RHS: vector<[N]x8xi8> +// * ACC, OUT: vector +// Note that the RHS is transposed. +// This data layout makes it efficient to load data into SVE +// registers in the layout expected by FEAT_I8MM instructions. +// Such a `vector.contract` is representative of the code we aim to generate +// by scalable vectorisation of `linalg.mmt4d`. +// See mlir/lib/Dialect/ArmSVE/Transforms/LowerContractionToSVEI8MMPattern.cpp +// for more information and rationale about these shapes. +// +// In this specific test we use M == 4 and N == 4 +// + +// Allocate and initialise a memref containing test data for use as the ACC +// operand. The memref has one dynamic dimension whose extent depends on the +// runtime value of VSCALE. +// +// The input parameter `%in` is a vector that is replicated VSCALE times +// across the columns of the memref. +func.func private @prepareAccTestData(%in: vector<4x4xi32>) -> memref<4x?xi32> { + %c0 = arith.constant 0 : index + %c1 = arith.constant 1 : index + %c4 = arith.constant 4 : index + %c0_i32 = arith.constant 0 : i32 + + %vs = vector.vscale + %d = arith.muli %c4, %vs : index + %mem = memref.alloc(%d) : memref<4x?xi32> + + scf.for %j = %c0 to %d step %c4 { + vector.transfer_write %in, %mem[%c0, %j] {in_bounds = [true, true]} : vector<4x4xi32>, memref<4x?xi32> + } + + return %mem : memref<4x?xi32> +} + +// Allocate and initialise a memref containing test data for use as the LHS +// operand. This function just writes the parameter `%in` into the memref. +// The size of the LHS does not depends on VSCALE. +func.func private @prepareLHSTestData(%in: vector<4x8xi8>) -> memref<4x8xi8> { + %c0 = arith.constant 0 : index + %c0_i8 = arith.constant 0 : i8 + + %mem = memref.alloc() : memref<4x8xi8> + vector.transfer_write %in, %mem[%c0, %c0] {in_bounds = [true, true]} : vector<4x8xi8>, memref<4x8xi8> + + return %mem : memref<4x8xi8> +} + +// Allocate and initialise a memref containing test data for use as the RHS +// operand. The memref has one dynamic dimension whose extent depends on the +// runtime value of VSCALE. +// +// The input parameter `%in` is a vector that is replicated VSCALE times +// across the rows of the memref. +// +// For convenience, flatten the memref, since the RHS vector is read first as a +// single-dimensional scalable vector and then cast into [N]x8 shape. +func.func private @prepareRHSTestData(%in: vector<4x8xi8>) -> memref { + %c0 = arith.constant 0 : index + %c1 = arith.constant 1 : index + %c4 = arith.constant 4 : index + %c0_i8 = arith.constant 0 : i8 + + %vs = vector.vscale + %d = arith.muli %c4, %vs : index + %mem = memref.alloc(%d) : memref + + scf.for %i = %c0 to %d step %c4 { + vector.transfer_write %in, %mem[%i, %c0] {in_bounds = [true, true]} : vector<4x8xi8>, memref + } + + %mem_out = memref.collapse_shape %mem [[0, 1]] : memref into memref + return %mem_out : memref +} + +// Test the operation where both LHS and RHS are interpreted as signed, hence +// we ultimately emit and execute the `smmla` instruction. + +// CHECK-IR-LABEL: llvm.func @test_smmla +// CHECK-IR-COUNT-4: arm_sve.intr.smmla +func.func @test_smmla() { + + %c0 = arith.constant 0 : index + %c0_i32 = arith.constant 0 : i32 + %c0_i8 = arith.constant 0 : i8 + + // Accumulator test data + %acc_cst = arith.constant dense<[[-44, 20, 44, -46], + [ -8, 25, -34, 26], + [-20, -36, -3, 39], + [-48, -31, -25, -21]]> : vector<4x4xi32> + + %acc_mem = func.call @prepareAccTestData(%acc_cst) : (vector<4x4xi32>) -> memref<4x?xi32> + %acc = vector.transfer_read %acc_mem[%c0, %c0], %c0_i32 {in_bounds = [true, true]} : memref<4x?xi32>, vector<4x[4]xi32> + + // FIXME: Workaround for a crash, see https://github.com/llvm/llvm-project/issues/143670 + %acc_cast = memref.cast %acc_mem : memref<4x?xi32> to memref<*xi32> + call @printMemrefI32(%acc_cast) : (memref<*xi32>) -> () + + // LHS test data + %lhs_cst = arith.constant dense<[[-35, -27, -36, -31, 23, -34, -8, -33], + [-20, 17, -32, -47, 37, 22, -7, -21], + [ -7, -35, 20, -4, 39, 46, -23, 40], + [ 40, 27, 37, 43, 38, -6, 37, 49]]> : vector<4x8xi8> + + %lhs_mem = func.call @prepareLHSTestData(%lhs_cst) : (vector<4x8xi8>) -> memref<4x8xi8> + %lhs = vector.transfer_read %lhs_mem[%c0, %c0], %c0_i8 {in_bounds = [true, true]} : memref<4x8xi8>, vector<4x8xi8> + + // RHS test data + %rhs_cst = arith.constant dense<[[-17, -50, -1, 48, -13, 22, 39, 33], + [-35, -24, 37, -32, 33, 30, -11, -17], + [-28, 31, 3, -44, -15, -27, 22, 35], + [-23, 39, 48, 26, -23, 32, -39, -38]]> : vector<4x8xi8> + + %rhs_mem = func.call @prepareRHSTestData(%rhs_cst) : (vector<4x8xi8>) -> memref + %rhs_flat = vector.transfer_read %rhs_mem[%c0], %c0_i8 {in_bounds = [true]} : memref, vector<[32]xi8> + %rhs = vector.shape_cast %rhs_flat : vector<[32]xi8> to vector<[4]x8xi8> + + // Matrix multiplication and accumulate with transposed RHS. + %0 = arith.extsi %lhs : vector<4x8xi8> to vector<4x8xi32> + %1 = arith.extsi %rhs : vector<[4]x8xi8> to vector<[4]x8xi32> + %2 = vector.contract {indexing_maps = #packed_maps, + iterator_types = ["parallel", "parallel", "reduction"], + kind = #vector.kind} %0, %1, %acc + : vector<4x8xi32>, vector<[4]x8xi32> into vector<4x[4]xi32> + + // Display the result of the multiplication + vector.print str "Result(SMMLA):\n" + %u0 = vector.extract %2[0] : vector<[4]xi32> from vector<4x[4]xi32> + %u1 = vector.extract %2[1] : vector<[4]xi32> from vector<4x[4]xi32> + %u2 = vector.extract %2[2] : vector<[4]xi32> from vector<4x[4]xi32> + %u3 = vector.extract %2[3] : vector<[4]xi32> from vector<4x[4]xi32> + vector.print %u0 : vector<[4]xi32> + vector.print %u1 : vector<[4]xi32> + vector.print %u2 : vector<[4]xi32> + vector.print %u3 : vector<[4]xi32> + + // Deallocate the buffers. + memref.dealloc %acc_mem : memref<4x?xi32> + memref.dealloc %lhs_mem : memref<4x8xi8> + memref.dealloc %rhs_mem : memref + + return +} + +// Test the operation where both LHS and RHS are interpreted as unsigned, hence +// we ultimately emit and execute the `ummla` instruction. + +// CHECK-IR-LABEL: llvm.func @test_ummla +// CHECK-IR-COUNT-4: arm_sve.intr.ummla +func.func @test_ummla() { + + %c0 = arith.constant 0 : index + %c0_i32 = arith.constant 0 : i32 + %c0_i8 = arith.constant 0 : i8 + + // Accumulator test data + %acc_cst = arith.constant dense<[[16, 16, 48, 40], + [40, 24, 35, 12], + [33, 24, 29, 19], + [28, 13, 33, 18]]> : vector<4x4xi32> + + %acc_mem = func.call @prepareAccTestData(%acc_cst) : (vector<4x4xi32>) -> memref<4x?xi32> + %acc = vector.transfer_read %acc_mem[%c0, %c0], %c0_i32 {in_bounds = [true, true]} : memref<4x?xi32>, vector<4x[4]xi32> + + // LHS test data + %lhs_cst = arith.constant dense<[[35, 42, 37, 49, 36, 36, 23, 33], + [39, 34, 33, 45, 43, 10, 44, 47], + [18, 35, 29, 25, 36, 33, 28, 29], + [26, 49, 43, 32, 27, 16, 45, 33]]> : vector<4x8xi8> + + %lhs_mem = func.call @prepareLHSTestData(%lhs_cst) : (vector<4x8xi8>) -> memref<4x8xi8> + %lhs = vector.transfer_read %lhs_mem[%c0, %c0], %c0_i8 {in_bounds = [true, true]} : memref<4x8xi8>, vector<4x8xi8> + + // RHS test data + %rhs_cst = arith.constant dense<[[18, 31, 37, 35, 44, 22, 37, 28], + [21, 22, 49, 39, 30, 28, 35, 37], + [21, 47, 39, 35, 23, 43, 24, 49], + [49, 49, 40, 32, 37, 20, 47, 40]]> : vector<4x8xi8> + + %rhs_mem = func.call @prepareRHSTestData(%rhs_cst) : (vector<4x8xi8>) -> memref + %rhs_flat = vector.transfer_read %rhs_mem[%c0], %c0_i8 {in_bounds = [true]} : memref, vector<[32]xi8> + %rhs = vector.shape_cast %rhs_flat : vector<[32]xi8> to vector<[4]x8xi8> + + // Matrix multiplication and accumulate with transposed RHS. + %0 = arith.extui %lhs : vector<4x8xi8> to vector<4x8xi32> + %1 = arith.extui %rhs : vector<[4]x8xi8> to vector<[4]x8xi32> + %2 = vector.contract {indexing_maps = #packed_maps, + iterator_types = ["parallel", "parallel", "reduction"], + kind = #vector.kind} %0, %1, %acc + : vector<4x8xi32>, vector<[4]x8xi32> into vector<4x[4]xi32> + + // Display the result of the multiplication + vector.print str "Result(UMMLA):\n" + %u0 = vector.extract %2[0] : vector<[4]xi32> from vector<4x[4]xi32> + %u1 = vector.extract %2[1] : vector<[4]xi32> from vector<4x[4]xi32> + %u2 = vector.extract %2[2] : vector<[4]xi32> from vector<4x[4]xi32> + %u3 = vector.extract %2[3] : vector<[4]xi32> from vector<4x[4]xi32> + vector.print %u0 : vector<[4]xi32> + vector.print %u1 : vector<[4]xi32> + vector.print %u2 : vector<[4]xi32> + vector.print %u3 : vector<[4]xi32> + + // Deallocate the buffers. + memref.dealloc %acc_mem : memref<4x?xi32> + memref.dealloc %lhs_mem : memref<4x8xi8> + memref.dealloc %rhs_mem : memref + + return +} + +// Test the operation where LHS is interpreted as unsigned and RHS is +// interpreted as signed, hence we ultimately emit and execute the `usmmla` +// instruction. + +// CHECK-IR-LABEL: llvm.func @test_usmmla +// CHECK-IR-COUNT-4: arm_sve.intr.usmmla +func.func @test_usmmla() { + + %c0 = arith.constant 0 : index + %c0_i32 = arith.constant 0 : i32 + %c0_i8 = arith.constant 0 : i8 + + // Accumulator test data + %acc_cst = arith.constant dense<[[-44, 20, 44, -46], + [ -8, 25, -34, 26], + [-20, -36, -3, 39], + [-48, -31, -25, -21]]> : vector<4x4xi32> + + %acc_mem = func.call @prepareAccTestData(%acc_cst) : (vector<4x4xi32>) -> memref<4x?xi32> + %acc = vector.transfer_read %acc_mem[%c0, %c0], %c0_i32 {in_bounds = [true, true]} : memref<4x?xi32>, vector<4x[4]xi32> + + // LHS test data + %lhs_cst = arith.constant dense<[[153, 161, 24, 157, 211, 154, 52, 27], + [168, 77, 136, 124, 249, 28, 13, 122], + [ 97, 82, 181, 39, 53, 25, 80, 240], + [184, 227, 106, 165, 126, 113, 121, 228]]> : vector<4x8xi8> + + %lhs_mem = func.call @prepareLHSTestData(%lhs_cst) : (vector<4x8xi8>) -> memref<4x8xi8> + %lhs = vector.transfer_read %lhs_mem[%c0, %c0], %c0_i8 {in_bounds = [true, true]} : memref<4x8xi8>, vector<4x8xi8> + + // RHS test data + %rhs_cst = arith.constant dense<[[ 40, 27, 37, 43, 38, -6, 37, 49], + [-17, -50, -1, 48, -13, 22, 39, 33], + [-35, -24, 37, -32, 33, 30, -11, -17], + [-28, 31, 3, -44, -15, -27, 22, 35]]> : vector<4x8xi8> + + %rhs_mem = func.call @prepareRHSTestData(%rhs_cst) : (vector<4x8xi8>) -> memref + %rhs_flat = vector.transfer_read %rhs_mem[%c0], %c0_i8 {in_bounds = [true]} : memref, vector<[32]xi8> + %rhs = vector.shape_cast %rhs_flat : vector<[32]xi8> to vector<[4]x8xi8> + + // Matrix multiplication and accumulate with transposed RHS. + %0 = arith.extui %lhs : vector<4x8xi8> to vector<4x8xi32> + %1 = arith.extsi %rhs : vector<[4]x8xi8> to vector<[4]x8xi32> + %2 = vector.contract {indexing_maps = #packed_maps, + iterator_types = ["parallel", "parallel", "reduction"], + kind = #vector.kind} %0, %1, %acc + : vector<4x8xi32>, vector<[4]x8xi32> into vector<4x[4]xi32> + + // Display the result of the multiplication + vector.print str "Result(USMMLA):\n" + %u0 = vector.extract %2[0] : vector<[4]xi32> from vector<4x[4]xi32> + %u1 = vector.extract %2[1] : vector<[4]xi32> from vector<4x[4]xi32> + %u2 = vector.extract %2[2] : vector<[4]xi32> from vector<4x[4]xi32> + %u3 = vector.extract %2[3] : vector<[4]xi32> from vector<4x[4]xi32> + vector.print %u0 : vector<[4]xi32> + vector.print %u1 : vector<[4]xi32> + vector.print %u2 : vector<[4]xi32> + vector.print %u3 : vector<[4]xi32> + + // Deallocate the buffers. + memref.dealloc %acc_mem : memref<4x?xi32> + memref.dealloc %lhs_mem : memref<4x8xi8> + memref.dealloc %rhs_mem : memref + + return +} + +// Test the operation where LHS is interpreted as signed and RHS is interpreted +// as unsigned. In this test we ultimately emit end execute the `usmmla` +// instruction with reversed operands, see `LowerContractionToSVEI8MMPattern.cpp` +// for more details. + +// CHECK-IR-LABEL: llvm.func @test_summla +// CHECK-IR-COUNT-4: arm_sve.intr.usmmla +func.func @test_summla() { + + %c0 = arith.constant 0 : index + %c0_i32 = arith.constant 0 : i32 + %c0_i8 = arith.constant 0 : i8 + + // Accumulator test data + %acc_cst = arith.constant dense<[[-44, 20, 44, -46], + [ -8, 25, -34, 26], + [-20, -36, -3, 39], + [-48, -31, -25, -21]]> : vector<4x4xi32> + + %acc_mem = func.call @prepareAccTestData(%acc_cst) : (vector<4x4xi32>) -> memref<4x?xi32> + %acc = vector.transfer_read %acc_mem[%c0, %c0], %c0_i32 {in_bounds = [true, true]} : memref<4x?xi32>, vector<4x[4]xi32> + + // LHS test data + %lhs_cst = arith.constant dense<[[-35, -27, -36, -31, 23, -34, -8, -33], + [-20, 17, -32, -47, 37, 22, -7, -21], + [ -7, -35, 20, -4, 39, 46, -23, 40], + [ 40, 27, 37, 43, 38, -6, 37, 49]]> : vector<4x8xi8> + + %lhs_mem = func.call @prepareLHSTestData(%lhs_cst) : (vector<4x8xi8>) -> memref<4x8xi8> + %lhs = vector.transfer_read %lhs_mem[%c0, %c0], %c0_i8 {in_bounds = [true, true]} : memref<4x8xi8>, vector<4x8xi8> + + // RHS test data + %rhs_cst = arith.constant dense<[[125, 171, 138, 187, 108, 175, 82, 99], + [221, 25, 164, 97, 156, 221, 218, 177], + [171, 160, 219, 191, 144, 45, 161, 210], + [223, 165, 123, 99, 108, 86, 37, 92]]> : vector<4x8xi8> + + %rhs_mem = func.call @prepareRHSTestData(%rhs_cst) : (vector<4x8xi8>) -> memref + %rhs_flat = vector.transfer_read %rhs_mem[%c0], %c0_i8 {in_bounds = [true]} : memref, vector<[32]xi8> + %rhs = vector.shape_cast %rhs_flat : vector<[32]xi8> to vector<[4]x8xi8> + + // Matrix multiplication and accumulate with transposed RHS. + %0 = arith.extsi %lhs : vector<4x8xi8> to vector<4x8xi32> + %1 = arith.extui %rhs : vector<[4]x8xi8> to vector<[4]x8xi32> + %2 = vector.contract {indexing_maps = #packed_maps, + iterator_types = ["parallel", "parallel", "reduction"], + kind = #vector.kind} %0, %1, %acc + : vector<4x8xi32>, vector<[4]x8xi32> into vector<4x[4]xi32> + + // Display the result of the multiplication + vector.print str "Result(SUMMLA (i.e. USMMLA transposed)):\n" + %u0 = vector.extract %2[0] : vector<[4]xi32> from vector<4x[4]xi32> + %u1 = vector.extract %2[1] : vector<[4]xi32> from vector<4x[4]xi32> + %u2 = vector.extract %2[2] : vector<[4]xi32> from vector<4x[4]xi32> + %u3 = vector.extract %2[3] : vector<[4]xi32> from vector<4x[4]xi32> + vector.print %u0 : vector<[4]xi32> + vector.print %u1 : vector<[4]xi32> + vector.print %u2 : vector<[4]xi32> + vector.print %u3 : vector<[4]xi32> + + // Deallocate the buffers. + memref.dealloc %acc_mem : memref<4x?xi32> + memref.dealloc %lhs_mem : memref<4x8xi8> + memref.dealloc %rhs_mem : memref + + return +} + +// Perform each test with SVE vector lengths 128 bits and 256 bits (i.e. VSCALEs +// 1 and 2, respectively). The vector length is set via the `setArmVLBits` +// function. The effect of setting a different vector length is that the tests +// allocate and operate on different sized buffers (see `prepareTestData` +// functions). + +func.func @main() { + %c128 = arith.constant 128 : i32 + %c256 = arith.constant 256 : i32 + +// CHECK-LABEL: Result(SMMLA): +// CHECK: ( -1999, 1941, 685, -2879 ) +// CHECK: ( -3705, 2952, 987, -685 ) +// CHECK: ( 2565, 4157, -1589, -357 ) +// CHECK: ( 2383, -2252, 32, -1365 ) + func.call @setArmVLBits(%c128) : (i32) -> () + func.call @test_smmla() : () -> () + +// CHECK: Result(SMMLA): +// CHECK: ( -1999, 1941, 685, -2879, -1999, 1941, 685, -2879 ) +// CHECK: ( -3705, 2952, 987, -685, -3705, 2952, 987, -685 ) +// CHECK: ( 2565, 4157, -1589, -357, 2565, 4157, -1589, -357 ) +// CHECK: ( 2383, -2252, 32, -1365, 2383, -2252, 32, -1365 ) + func.call @setArmVLBits(%c256) : (i32) -> () + func.call @test_smmla() : () -> () + +// CHECK-LABEL: Result(UMMLA): +// CHECK: ( 9183, 9513, 10460, 11314 ) +// CHECK: ( 9648, 9812, 10092, 12088 ) +// CHECK: ( 7548, 7625, 8398, 9044 ) +// CHECK: ( 8855, 9046, 9685, 11191 ) + func.call @setArmVLBits(%c128) : (i32) -> () + func.call @test_ummla() : () -> () + +// CHECK: Result(UMMLA): +// CHECK: ( 9183, 9513, 10460, 11314, 9183, 9513, 10460, 11314 ) +// CHECK: ( 9648, 9812, 10092, 12088, 9648, 9812, 10092, 12088 ) +// CHECK: ( 7548, 7625, 8398, 9044, 7548, 7625, 8398, 9044 ) +// CHECK: ( 8855, 9046, 9685, 11191, 8855, 9046, 9685, 11191 ) + func.call @setArmVLBits(%c256) : (i32) -> () + func.call @test_ummla() : () -> () + +// CHECK-LABEL: Result(USMMLA): +// CHECK: ( 28403, 445, -2759, -11409 ) +// CHECK: ( 34908, 1047, 142, -7274 ) +// CHECK: ( 31032, 6807, -2378, 7382 ) +// CHECK: ( 44217, 6396, -10930, 623 ) + func.call @setArmVLBits(%c128) : (i32) -> () + func.call @test_usmmla() : () -> () + +// CHECK: Result(USMMLA): +// CHECK: ( 28403, 445, -2759, -11409, 28403, 445, -2759, -11409 ) +// CHECK: ( 34908, 1047, 142, -7274, 34908, 1047, 142, -7274 ) +// CHECK: ( 31032, 6807, -2378, 7382, 31032, 6807, -2378, 7382 ) +// CHECK: ( 44217, 6396, -10930, 623, 44217, 6396, -10930, 623 ) + func.call @setArmVLBits(%c256) : (i32) -> () + func.call @test_usmmla() : () -> () + +// CHECK-LABEL: Result(SUMMLA (i.e. USMMLA transposed)): +// CHECK: ( -27190, -28812, -30502, -23575 ) +// CHECK: ( -7613, -8386, -15938, -6521 ) +// CHECK: ( 9468, 18750, 9199, 5764 ) +// CHECK: ( 33655, 41064, 48900, 31627 ) + func.call @setArmVLBits(%c128) : (i32) -> () + func.call @test_summla() : () -> () + +// CHECK: Result(SUMMLA (i.e. USMMLA transposed)): +// CHECK: ( -27190, -28812, -30502, -23575, -27190, -28812, -30502, -23575 ) +// CHECK: ( -7613, -8386, -15938, -6521, -7613, -8386, -15938, -6521 ) +// CHECK: ( 9468, 18750, 9199, 5764, 9468, 18750, 9199, 5764 ) +// CHECK: ( 33655, 41064, 48900, 31627, 33655, 41064, 48900, 31627 ) + func.call @setArmVLBits(%c256) : (i32) -> () + func.call @test_summla() : () -> () + + return +} + +func.func private @setArmVLBits(%bits : i32) +func.func private @printMemrefI32(%ptr : memref<*xi32>)