-
Notifications
You must be signed in to change notification settings - Fork 15.2k
[mlir][xegpu] Add initial skeleton implementation for lowering ConvertLayoutOp #146176
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
|
✅ With the latest revision this PR passed the C/C++ code formatter. |
|
@llvm/pr-subscribers-mlir-gpu @llvm/pr-subscribers-mlir Author: Chao Chen (chencha3) ChangesThis PR adds initial skeleton implementation for lowering ConvertLayoutOp. It currently only supports cases where SLM is not needed. Full diff: https://github.com/llvm/llvm-project/pull/146176.diff 9 Files Affected:
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
index daab65ec893b8..97887cef684df 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
@@ -918,21 +918,22 @@ def XeGPU_FenceOp: XeGPU_Op<"fence", []> {
def XeGPU_ConvertLayoutOp: XeGPU_Op<"convert_layout", [Pure, AllTypesMatch<["source", "result"]>]> {
let summary = "Convert the layout of the input operand";
let description = [{
- `convert_layout` adjusts the data distribution across subgroups and/or work-items by modifying
- the `LayoutAttr`. Both `srcMap` and `resMap` must correspond to the same programming scope, such
- as workgroup-level (wg) or subgroup-level (sg) code. This operation is not valid once the IR is
- lowered to WI level because that is the end result of all distributions.
+ `convert_layout` redistribute data across subgroups and/or work-items from the `input_layout` to
+ the `target_layout`. Both `input_layout` and `target_layout` must correspond to the same programming
+ scope, such as workgroup-level (wg) or subgroup-level (sg) code. This operation is not valid once
+ the IR is lowered to WI level because that is the end result of all distributions.
}];
- let arguments = (ins XeGPU_Vector2DType: $source,
- XeGPU_LayoutAttr: $srcMap,
- XeGPU_LayoutAttr: $resMap
- );
- let results = (outs XeGPU_Vector2DType: $result);
+ let arguments = (ins XeGPU_VectorType: $source,
+ XeGPU_LayoutAttr: $input_layout,
+ XeGPU_LayoutAttr: $target_layout);
+ let results = (outs XeGPU_VectorType: $result);
let assemblyFormat = [{
- $source attr-dict `:` type($source)
+ $source prop-dict attr-dict `:` type($source)
}];
+ let hasFolder = 1;
let hasVerifier = 1;
+ let hasCanonicalizer = 1;
}
#endif // MLIR_DIALECT_XEGPU_IR_XEGPUOPS_TD
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
index 84314875c2ae5..af40b3754bd8a 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
@@ -21,8 +21,8 @@ def XeGPU_DpasOprType: VectorOfRankAndType<[1, 2, 3], [XeGPU_ScalarType]>;
def XeGPU_DpasResType: VectorOfRankAndType<[1, 2], [XeGPU_ScalarType]>;
def XeGPU_OffsetType: VectorOfRankAndType<[1], [Index]>;
def XeGPU_MaskType: AnyTypeOf<[VectorOfRankAndType<[1], [I1]>, I1]>;
-def XeGPU_ValueType: AnyTypeOf<[VectorOfRankAndType<[1,2,3,4], [XeGPU_ScalarType]>, XeGPU_ScalarType]>;
-def XeGPU_Vector2DType: VectorOfRankAndType<[2], [XeGPU_ScalarType]>;
+def XeGPU_VectorType: VectorOfRankAndType<[1,2,3,4,5,6], [XeGPU_ScalarType]>;
+def XeGPU_ValueType: AnyTypeOf<[XeGPU_VectorType, XeGPU_ScalarType]>;
// common base class for types in XeGPU dialect
class XeGPUTypeDef<string name, string typeMnemonic, list<Trait> traits = [],
diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
index 2793c7a35bc97..97415cc74f928 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
@@ -609,32 +609,55 @@ LogicalResult DpasOp::verify() {
// XeGPU_ConvertLayoutOp
//===----------------------------------------------------------------------===//
LogicalResult ConvertLayoutOp::verify() {
- auto srcMap = getSrcMapAttr();
- auto resMap = getResMapAttr();
- if (!srcMap)
- return emitOpError("expected srcMap.");
- if (!resMap)
- return emitOpError("expected resMap.");
-
- if (srcMap == resMap)
- return emitOpError("expected different srcMap and resMap.");
-
- // both srcMap and resMap should be WgLayout or SgLayout at the same time.
- if ((!srcMap.isWgLayout() || !resMap.isWgLayout()) &&
- (!srcMap.isSgLayout() || !resMap.isSgLayout()))
- return emitOpError(
- "expected srcMap and resMap be WgLayout or SgLayout at the same time.");
+ auto srcLayout = getInputLayout();
+ auto resLayout = getTargetLayout();
+ if (!srcLayout)
+ return emitOpError("expected input layout.");
+ if (!resLayout)
+ return emitOpError("expected target layout.");
+
+ // both input and target layouts should be WgLayout or SgLayout at the same
+ // time.
+ if ((!srcLayout.isWgLayout() || !resLayout.isWgLayout()) &&
+ (!srcLayout.isSgLayout() || !resLayout.isSgLayout()))
+ return emitOpError("expected input layout and target layout be WgLayout or "
+ "SgLayout at the same time.");
auto shape = getSource().getType().getShape();
- if (!XeGPUDialect::isEvenlyDistributable(shape, srcMap))
- return emitOpError("invalid srcMap, data cannot be evenly distributed.");
+ if (!XeGPUDialect::isEvenlyDistributable(shape, srcLayout))
+ return emitOpError(
+ "invalid input layout, data cannot be evenly distributed.");
- if (!XeGPUDialect::isEvenlyDistributable(shape, resMap))
- return emitOpError("invalid resMap, data cannot be evenly distributed.");
+ if (!XeGPUDialect::isEvenlyDistributable(shape, resLayout))
+ return emitOpError(
+ "invalid target layout, data cannot be evenly distributed.");
return mlir::success();
}
+OpFoldResult ConvertLayoutOp::fold(FoldAdaptor adaptor) {
+ if (getInputLayout() == getTargetLayout())
+ return getSource();
+ return {};
+}
+
+struct FoldConvertLayoutOp : public OpRewritePattern<xegpu::ConvertLayoutOp> {
+ using OpRewritePattern<xegpu::ConvertLayoutOp>::OpRewritePattern;
+ LogicalResult matchAndRewrite(xegpu::ConvertLayoutOp op,
+ PatternRewriter &rewriter) const override {
+ if (op.getInputLayout() == op.getTargetLayout()) {
+ rewriter.replaceOp(op, op.getSource());
+ return success();
+ }
+ return failure();
+ }
+};
+
+void ConvertLayoutOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
+ MLIRContext *context) {
+ patterns.add<FoldConvertLayoutOp>(context);
+}
+
} // namespace xegpu
} // namespace mlir
diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
index 3950e8f70d1ca..06e0c6105df58 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
@@ -78,6 +78,20 @@ resolveUnrealizedConversionCastOp(UnrealizedConversionCastOp castOp) {
}
}
+struct ConvertLayoutOpPattern
+ : public OpRewritePattern<xegpu::ConvertLayoutOp> {
+ using OpRewritePattern::OpRewritePattern;
+ LogicalResult matchAndRewrite(xegpu::ConvertLayoutOp op,
+ PatternRewriter &rewriter) const override {
+ xegpu::LayoutAttr input_layout = op.getInputLayoutAttr().dropInstData();
+ xegpu::LayoutAttr target_layout = op.getTargetLayoutAttr().dropInstData();
+ auto newOp = rewriter.createOrFold<xegpu::ConvertLayoutOp>(
+ op.getLoc(), op.getType(), op.getSource(), input_layout, target_layout);
+ rewriter.replaceOp(op, newOp);
+ return success();
+ }
+};
+
//===------------------------------------------------------------------------===//
// The XeGPUBlockingPass leverages the unroll patterns for XeGPU and Vector ops
// to partition operations that process large shapes into multiple operations on
@@ -335,6 +349,7 @@ void XeGPUBlockingPass::runOnOperation() {
});
RewritePatternSet patterns(ctx);
+ patterns.add<ConvertLayoutOpPattern>(ctx);
vector::UnrollVectorOptions vectorOptions;
vectorOptions.setNativeShapeFn(options.nativeShape);
diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp
index e3563d10bc6f1..89dcddec752a1 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp
@@ -106,12 +106,12 @@ struct WgToSgCreateNdOp : public OpConversionPattern<xegpu::CreateNdDescOp> {
using OpConversionPattern<xegpu::CreateNdDescOp>::OpConversionPattern;
// Calculate offset for each subgroup
- SmallVector<OpFoldResult>
+ static SmallVector<OpFoldResult>
calculateGlobalOffsets(ConversionPatternRewriter &rewriter, Location loc,
const SmallVector<OpFoldResult> &originalOffsets,
const SmallVector<Value> &localOffset,
const SmallVector<int64_t> &distUnitBaseAddr,
- const SmallVector<int64_t> &distUnitShape) const {
+ const SmallVector<int64_t> &distUnitShape) {
assert(localOffset.size() == distUnitBaseAddr.size() &&
"localOffset and distUnitBaseAddr must have the same rank");
@@ -390,6 +390,46 @@ struct WgToSgElementwiseOp : public ConversionPattern {
}
};
+struct WgToSgConvertLayoutOp
+ : public OpConversionPattern<xegpu::ConvertLayoutOp> {
+ using OpConversionPattern<xegpu::ConvertLayoutOp>::OpConversionPattern;
+ LogicalResult
+ matchAndRewrite(xegpu::ConvertLayoutOp op, OneToNOpAdaptor adaptor,
+ ConversionPatternRewriter &rewriter) const override {
+ xegpu::LayoutAttr input = op.getInputLayout();
+ xegpu::LayoutAttr target = op.getTargetLayout();
+
+ if (!input || !target || !input.isWgLayout() || !target.isWgLayout())
+ return rewriter.notifyMatchFailure(
+ op, "Input and target layouts must have subgroup layout");
+
+ DenseI32ArrayAttr inputSgLayout = input.getSgLayout();
+ DenseI32ArrayAttr inputSgData = input.getSgData();
+ DenseI32ArrayAttr targetSgLayout = target.getSgLayout();
+ DenseI32ArrayAttr targetSgData = target.getSgData();
+
+ // TODO: currently we only support for optimal case, where input and
+ // output has the same sg_layout and sg_data, so SLM is not involved.
+ if (inputSgLayout != targetSgLayout || inputSgData != targetSgData)
+ return failure();
+
+ input = input.dropSgLayoutAndData();
+ target = target.dropSgLayoutAndData();
+
+ SmallVector<Value> newOps(adaptor.getSource());
+
+ if (input && target) {
+ for (auto [i, src] : llvm::enumerate(adaptor.getSource())) {
+ auto newOp = rewriter.create<xegpu::ConvertLayoutOp>(
+ op.getLoc(), src.getType(), src, input, target);
+ newOps[i] = newOp;
+ }
+ }
+ rewriter.replaceOpWithMultiple(op, {newOps});
+ return success();
+ }
+};
+
// Handles UnrealizedConversionCastOp generated during
// SCFStructuralTypeConversions (step 1). This op may appear as either a
// target or source materialization for Vector values, e.g.:
@@ -473,8 +513,8 @@ namespace xegpu {
void populateXeGPUWgToSgDistributePatterns(RewritePatternSet &patterns) {
patterns.add<WgToSgCreateNdOp, WgToSgLoadNdOp, WgToSgStoreNdOp,
WgToSgUpdateNdOffsetOp, WgToSgDpasOp, WgToSgPrefetchNdOp,
- UnrealizedConversionCastOpPattern, WgToSgElementwiseOp>(
- patterns.getContext());
+ UnrealizedConversionCastOpPattern, WgToSgElementwiseOp,
+ WgToSgConvertLayoutOp>(patterns.getContext());
}
} // namespace xegpu
} // namespace mlir
@@ -581,6 +621,11 @@ void XeGPUWgToSgDistributePass::runOnOperation() {
return isLegal(layout);
});
+ target.addDynamicallyLegalOp<xegpu::ConvertLayoutOp>(
+ [=](xegpu::ConvertLayoutOp op) -> bool {
+ return isLegal(op.getInputLayout()) && isLegal(op.getTargetLayout());
+ });
+
target.addDynamicallyLegalDialect<math::MathDialect, arith::ArithDialect>(
[=](Operation *op) -> std::optional<bool> {
// Only handle elementwise mappable ops
diff --git a/mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp b/mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp
index 6b85a66a8bd36..d5ae3c20e222e 100644
--- a/mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp
+++ b/mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp
@@ -124,6 +124,10 @@ xegpu::LayoutAttr xegpu::getLayoutAttr(const Value value) {
Operation *defOp = result.getDefiningOp();
assert(defOp && "result must have a defining op");
+ // For ConvertLayoutOp, the layout is stored in the targetLayoutAttr
+ if (auto convertOp = dyn_cast<xegpu::ConvertLayoutOp>(defOp))
+ return convertOp.getTargetLayoutAttr();
+
// for LoadNdOp, the layout is stored in the tensor descriptor
if (auto loadNd = dyn_cast<xegpu::LoadNdOp>(defOp))
return getLayoutAttr(loadNd.getTensorDesc());
diff --git a/mlir/test/Dialect/XeGPU/invalid.mlir b/mlir/test/Dialect/XeGPU/invalid.mlir
index a2778cd94d963..65e1d22449bdd 100644
--- a/mlir/test/Dialect/XeGPU/invalid.mlir
+++ b/mlir/test/Dialect/XeGPU/invalid.mlir
@@ -511,19 +511,11 @@ func.func @tensor_desc_scatter_invalid_chunk_size_2D(%src: ui64, %offsets: vecto
return
}
-// -----
-func.func @convert_layout_same_map(%a: vector<32x64xf16>) {
- // expected-error@+1 {{expected different srcMap and resMap}}
- %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>,
- resMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16>
- gpu.return
-}
-
// -----
func.func @convert_layout_unmatch(%a: vector<32x64xf16>) {
- // expected-error@+1 {{expected srcMap and resMap be WgLayout or SgLayout at the same time}}
- %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>,
- resMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16>
+ // expected-error@+1 {{expected input layout and target layout be WgLayout or SgLayout at the same time}}
+ %2 = xegpu.convert_layout %a <{input_layout = #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>,
+ target_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>}> : vector<32x64xf16>
gpu.return
}
diff --git a/mlir/test/Dialect/XeGPU/layout.mlir b/mlir/test/Dialect/XeGPU/layout.mlir
index 7f3ebec225cdf..ef51dfbbfd574 100644
--- a/mlir/test/Dialect/XeGPU/layout.mlir
+++ b/mlir/test/Dialect/XeGPU/layout.mlir
@@ -35,14 +35,14 @@ gpu.func @create_nd_tdesc_wg_1(%src: memref<24x32xf32>) {
}
gpu.func @convert_layout(%a: vector<32x64xf16>) {
- %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>,
- resMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16>
+ %2 = xegpu.convert_layout %a <{input_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>,
+ target_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>}> : vector<32x64xf16>
gpu.return
}
gpu.func @convert_layout_wg(%a: vector<32x64xf16>) {
- %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>,
- resMap = #xegpu.layout<sg_layout = [4, 2], sg_data = [8, 32], lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16>
+ %2 = xegpu.convert_layout %a <{input_layout = #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>,
+ target_layout = #xegpu.layout<sg_layout = [4, 2], sg_data = [8, 32], lane_layout = [1, 16], lane_data = [1, 1]>}> : vector<32x64xf16>
gpu.return
}
diff --git a/mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-rr.mlir b/mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-rr.mlir
index c6124f90e0f48..6c688f4db6dec 100644
--- a/mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-rr.mlir
+++ b/mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-rr.mlir
@@ -198,4 +198,14 @@ gpu.module @test_round_robin_assignment {
gpu.return
}
+ gpu.func @convert_layout_optimal(%arg0: memref<32x64xf32>) {
+ %0 = xegpu.create_nd_tdesc %arg0[0, 0] : memref<32x64xf32> -> !xegpu.tensor_desc<32x64xf32, #xegpu.layout<sg_layout = [2, 2], sg_data = [16, 16], inst_data = [16, 16]>>
+ //CHECK-2: xegpu.load_nd {{.*}} : !xegpu.tensor_desc<16x16xf32, #xegpu.layout<inst_data = [16, 16]>> -> vector<16x16xf32>
+ //CHECK-2: xegpu.convert_layout {{.*}} <{input_layout = #xegpu.layout<inst_data = [16, 16]>, target_layout = #xegpu.layout<inst_data = [8, 16]>}> : vector<16x16xf32>
+ %1 = xegpu.load_nd %0 : !xegpu.tensor_desc<32x64xf32, #xegpu.layout<sg_layout = [2, 2], sg_data = [16, 16], inst_data = [16, 16]>> -> vector<32x64xf32>
+ %2 = xegpu.convert_layout %1 <{input_layout = #xegpu.layout<sg_layout = [2, 2], sg_data = [16, 16], inst_data = [16, 16]>,
+ target_layout = #xegpu.layout<sg_layout = [2, 2], sg_data = [16, 16], inst_data = [8, 16]>}> : vector<32x64xf32>
+ gpu.return
+ }
+
}
|
|
I confirm that this lowers simple layout conversions correctly, see e.g. this example https://gist.github.com/tkarna/bbf688ecad43fd6a2f5f8b94d8ad3cd6 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
what happens when the source of ConvLayoutOp is blocked? Can you add some comment here explaining why we don't block the convertOp as well here?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Also I could not fine relevent test case for tis logic?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
UnrollPatterns always use ExtractStridedSliceOp to unroll the values and use InsertStrideSliceOp at the end to reconstruct the vector with original shape. So, the input and output value of the covertLayoutOp is always with original vector type.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
add a comment about the pattern.
mlir/test/Dialect/XeGPU/layout.mlir
Outdated
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
any reason why there test do not have CHECK strings?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
good catch. I am going to fix it. It seems we missed the CHECK strings before.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
in this case, if the canonicalizer pass is invoked first then this pattern would not even apply. right?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
No, this is the general case, which will use load_matrix/store_matrix to fulfill.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I meant to say code after this if.
starting from line 417 inputSgLayout == targetLayout && inputSgData == targetSgData must be true. Isn't that the same case for folding?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
these will be folded away If I am not mistaken? So in that case why not directly forward the sources without creating new ConvertOps?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
No. they are not folded. ConvertLayoutOp will be folded only when InputLayout and TargetLayout are the same. So here input and target could be different.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
bit confused here. line 415 says otherwise. If they are different we bail out early.
Please add some comments to clarify the logic here.
fdb0091 to
da7f78a
Compare
| struct ConvertLayoutOpPattern | ||
| : public OpRewritePattern<xegpu::ConvertLayoutOp> { | ||
| using OpRewritePattern::OpRewritePattern; | ||
| LogicalResult matchAndRewrite(xegpu::ConvertLayoutOp op, |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
could you add some comment here explaining why inst_data must be dropped?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, added.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I meant to say code after this if.
starting from line 417 inputSgLayout == targetLayout && inputSgData == targetSgData must be true. Isn't that the same case for folding?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
bit confused here. line 415 says otherwise. If they are different we bail out early.
Please add some comments to clarify the logic here.
| } | ||
| }; | ||
|
|
||
| struct WgToSgConvertLayoutOp |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
please add IR example in the format From to To which comments.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Oh, I got your point. Here we are only interested in sgLayout and sgData fields. The rest fields, e.g., inst_data could be different, could be different.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I improved comments with examples.
| return isLegal(layout); | ||
| }); | ||
|
|
||
| target.addDynamicallyLegalOp<xegpu::ConvertLayoutOp>( |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
can you add a commet on the condition for legality?
| %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>, | ||
| resMap = #xegpu.layout<sg_layout = [4, 2], sg_data = [8, 32], lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16> | ||
| // CHECK: xegpu.convert_layout | ||
| // CHECK-SAME: <{input_layout = #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>, target_layout = #xegpu.layout<sg_layout = [4, 2], sg_data = [8, 32], lane_layout = [1, 16], lane_data = [1, 1]>}> : vector<32x64xf16> |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
do we have any conversion test cases?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, we have one
charithaintc
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM. please addreess the comments.
| //CHECK: [[b:%.+]] = xegpu.create_nd_tdesc [[arg1]][[[c0]], [[c0]]] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [16, 1]>> | ||
| //CHECK: [[load_a:%.+]] = xegpu.load_nd [[a]] {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [16, 1]>} : !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [16, 1]>> -> vector<16x16xf16> | ||
| //CHECK: [[load_b:%.+]] = xegpu.load_nd [[b]] {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [16, 1]>} : !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [16, 1]>> -> vector<16x16xf16> | ||
| //CHECK: [[cvt:%.+]] = xegpu.convert_layout [[load_a]] <{input_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [16, 1]>, target_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [8, 1]>}> : vector<16x16xf16> |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
nit: I think this convertOp should also be folded away when we improve the logic, right? So maybe better to use a diferent source/target layout for it?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
they are actually different, the input is [16, 1], and the output is [8, 1] for lane_data.
|
|
||
| // This pattern rewrites ConvertLayoutOp by removing the inst_data field | ||
| // from the layout attributes. As the surrounding extract_strided_slice | ||
| // and insert_strided_slice operations reconstruct the original value |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The explanation could leave to misundertanding as it states the Inst_data is dropped due to "surrounding operations" - but the code doesn't check "surrounding operations".
Consider this version:
"The convertLayout is a no-op for different inst_data attributes since both the producer and consumer operations control the distribution based on their respective inst_data. Each operation is decomposed into smaller tiles that match the inst_data, while the input and output tile sizes remain the same as sg_data."
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Rephrased yours with copilot.
| ); | ||
| let results = (outs XeGPU_Vector2DType: $result); | ||
| let arguments = (ins XeGPU_VectorType: $source, | ||
| XeGPU_LayoutAttr: $input_layout, |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please consider add/improve a test case for 2d+ shape
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Add one with 3D shape.
|
|
||
| // TODO: currently we only support for optimal case, where input and | ||
| // output has the same sg_layout and sg_data, so SLM is not involved. | ||
| if (inputSgLayout != targetSgLayout || inputSgData != targetSgData) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
need to check order attribute also?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, good catch. It is fixed
…tLayoutOp (llvm#146176) This PR adds initial skeleton implementation for lowering ConvertLayoutOp. It currently only supports cases where SLM is not needed. --------- Co-authored-by: Adam Siemieniuk <[email protected]>
This PR adds initial skeleton implementation for lowering ConvertLayoutOp. It currently only supports cases where SLM is not needed.