diff --git a/clang/lib/AST/ASTStructuralEquivalence.cpp b/clang/lib/AST/ASTStructuralEquivalence.cpp index 0f2762d5c0f14..f113b32d6eb30 100644 --- a/clang/lib/AST/ASTStructuralEquivalence.cpp +++ b/clang/lib/AST/ASTStructuralEquivalence.cpp @@ -870,7 +870,29 @@ static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, else if (T1->getTypeClass() == Type::FunctionNoProto && T2->getTypeClass() == Type::FunctionProto) TC = Type::FunctionNoProto; - else + else if (Context.LangOpts.C23 && !Context.StrictTypeSpelling && + (T1->getTypeClass() == Type::Enum || + T2->getTypeClass() == Type::Enum)) { + // In C23, if not being strict about token equivalence, we need to handle + // the case where one type is an enumeration and the other type is an + // integral type. + // + // C23 6.7.3.3p16: The enumerated type is compatible with the underlying + // type of the enumeration. + // + // Treat the enumeration as its underlying type and use the builtin type + // class comparison. + if (T1->getTypeClass() == Type::Enum) { + T1 = T1->getAs()->getDecl()->getIntegerType(); + if (!T2->isBuiltinType() || T1.isNull()) // Sanity check + return false; + } else if (T2->getTypeClass() == Type::Enum) { + T2 = T2->getAs()->getDecl()->getIntegerType(); + if (!T1->isBuiltinType() || T2.isNull()) // Sanity check + return false; + } + TC = Type::Builtin; + } else return false; } diff --git a/clang/test/C/C23/n3037.c b/clang/test/C/C23/n3037.c index ce6f4c4ea7acf..c5828133cee2e 100644 --- a/clang/test/C/C23/n3037.c +++ b/clang/test/C/C23/n3037.c @@ -401,3 +401,39 @@ _Static_assert(0 == _Generic(inner_anon_tagged.untagged, struct { int i; } : 1, // unions and structures are both RecordDecl objects, whereas EnumDecl is not). enum { E_Untagged1 } nontag_enum; // both-note {{previous definition is here}} _Static_assert(0 == _Generic(nontag_enum, enum { E_Untagged1 } : 1, default : 0)); // both-error {{redefinition of enumerator 'E_Untagged1'}} + +// Test that enumerations are compatible with their underlying type, but still +// diagnose when "same type" is required rather than merely "compatible type". +enum E1 : int { e1 }; // Fixed underlying type +enum E2 { e2 }; // Unfixed underlying type, defaults to int or unsigned int + +struct GH149965_1 { int h; }; +// This typeof trick is used to get the underlying type of the enumeration in a +// platform agnostic way. +struct GH149965_2 { __typeof__(+(enum E2){}) h; }; +void gh149965(void) { + extern struct GH149965_1 x1; // c17-note {{previous declaration is here}} + extern struct GH149965_2 x2; // c17-note {{previous declaration is here}} + + // Both the structure and the variable declarations are fine because only a + // compatible type is required, not the same type, because the structures are + // declared in different scopes. + struct GH149965_1 { enum E1 h; }; + struct GH149965_2 { enum E2 h; }; + + extern struct GH149965_1 x1; // c17-error {{redeclaration of 'x1'}} + extern struct GH149965_2 x2; // c17-error {{redeclaration of 'x2'}} + + // However, in the same scope, the same type is required, not just compatible + // types. + // FIXME: this should be an error in both C17 and C23 mode. + struct GH149965_3 { int h; }; // c17-note {{previous definition is here}} + struct GH149965_3 { enum E1 h; }; // c17-error {{redefinition of 'GH149965_3'}} + + // For Clang, the composite type after declaration merging is the enumeration + // type rather than an integer type. + enum E1 *eptr; + [[maybe_unused]] __typeof__(x1.h) *ptr = eptr; + enum E2 *eptr2; + [[maybe_unused]] __typeof__(x2.h) *ptr2 = eptr2; +}