Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 29 additions & 0 deletions clang/include/clang/CIR/Dialect/IR/CIROps.td
Original file line number Diff line number Diff line change
Expand Up @@ -1173,6 +1173,35 @@ def CIR_SwitchOp : CIR_Op<"switch", [
let hasLLVMLowering = false;
}

//===----------------------------------------------------------------------===//
// IsConstantOp
//===----------------------------------------------------------------------===//

def CIR_IsConstantOp : CIR_Op<"is_constant", [Pure]> {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

please add summary

let summary = "Test for manifest compile-time constant";
let description = [{
Returns `true` if the argument is known to be a manifest compile-time
constant otherwise returns `false`. If the argument is a constant expression
which refers to a global (the address of which _is_ a constant, but not
manifest during the compile), then the intrinsic evaluates to `false`.

This is used to represent `__builtin_constant_p` in cases where the argument
isn't known to be constant during initial translation of the source code but
might be proven to be constant after later optimizations.

Example:
```
%1 = cir.is_constant %2 : !s32i -> !cir.bool
```
}];
let arguments = (ins CIR_AnyType:$val);
let results = (outs CIR_BoolType:$result);

let assemblyFormat = [{
$val `:` qualified(type($val)) `->` qualified(type($result)) attr-dict
}];
}

//===----------------------------------------------------------------------===//
// SwitchFlatOp
//===----------------------------------------------------------------------===//
Expand Down
39 changes: 39 additions & 0 deletions clang/lib/CIR/CodeGen/CIRGenBuiltin.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -542,6 +542,45 @@ RValue CIRGenFunction::emitBuiltinExpr(const GlobalDecl &gd, unsigned builtinID,
return emitCall(e->getCallee()->getType(), CIRGenCallee::forDirect(fnOp), e,
returnValue);
}

case Builtin::BI__builtin_constant_p: {
mlir::Type resultType = convertType(e->getType());

const Expr *arg = e->getArg(0);
QualType argType = arg->getType();
// FIXME: The allowance for Obj-C pointers and block pointers is historical
// and likely a mistake.
if (!argType->isIntegralOrEnumerationType() && !argType->isFloatingType() &&
!argType->isObjCObjectPointerType() && !argType->isBlockPointerType()) {
// Per the GCC documentation, only numeric constants are recognized after
// inlining.
return RValue::get(
builder.getConstInt(getLoc(e->getSourceRange()),
mlir::cast<cir::IntType>(resultType), 0));
}

if (arg->HasSideEffects(getContext())) {
// The argument is unevaluated, so be conservative if it might have
// side-effects.
return RValue::get(
builder.getConstInt(getLoc(e->getSourceRange()),
mlir::cast<cir::IntType>(resultType), 0));
}

mlir::Value argValue = emitScalarExpr(arg);
if (argType->isObjCObjectPointerType()) {
cgm.errorNYI(e->getSourceRange(),
"__builtin_constant_p: Obj-C object pointer");
return {};
}
argValue = builder.createBitcast(argValue, convertType(argType));

mlir::Value result = cir::IsConstantOp::create(
builder, getLoc(e->getSourceRange()), argValue);
// IsConstantOp returns a bool, but __builtin_constant_p returns an int.
result = builder.createBoolToInt(result, resultType);
return RValue::get(result);
}
case Builtin::BI__builtin_dynamic_object_size:
case Builtin::BI__builtin_object_size: {
unsigned type =
Expand Down
7 changes: 7 additions & 0 deletions clang/lib/CIR/Lowering/DirectToLLVM/LowerToLLVM.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3979,6 +3979,13 @@ mlir::LogicalResult CIRToLLVMGetBitfieldOpLowering::matchAndRewrite(
return mlir::success();
}

mlir::LogicalResult CIRToLLVMIsConstantOpLowering::matchAndRewrite(
cir::IsConstantOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const {
rewriter.replaceOpWithNewOp<mlir::LLVM::IsConstantOp>(op, adaptor.getVal());
return mlir::success();
}

mlir::LogicalResult CIRToLLVMInlineAsmOpLowering::matchAndRewrite(
cir::InlineAsmOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const {
Expand Down
281 changes: 281 additions & 0 deletions clang/test/CIR/CodeGenBuiltins/builtin-constant-p.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,281 @@
// RUN: %clang_cc1 -triple x86_64-unknown-linux-gnu -emit-cir %s -o %t.cir
// RUN: FileCheck --input-file=%t.cir %s -check-prefix=CIR
// RUN: %clang_cc1 -triple x86_64-unknown-linux-gnu -fclangir -emit-llvm %s -o %t-cir.ll
// RUN: FileCheck --input-file=%t-cir.ll %s -check-prefix=LLVM
// RUN: %clang_cc1 -triple x86_64-unknown-linux-gnu -emit-llvm %s -o %t.ll
// RUN: FileCheck --input-file=%t.ll %s -check-prefix=OGCG

int a = 42;

/* --- Compound literals */

struct foo { int x, y; };

int y;
struct foo f = (struct foo){ __builtin_constant_p(y), 42 };

// CIR: cir.global external @f = #cir.const_record<{#cir.int<0> : !s32i, #cir.int<42> : !s32i}> : !rec_foo
// LLVM: @f = global %struct.foo { i32 0, i32 42 }
// OGCG: @f = global %struct.foo { i32 0, i32 42 }

struct foo test0(int expr) {
struct foo f = (struct foo){ __builtin_constant_p(expr), 42 };
return f;
}

// CIR: cir.func {{.*}} @test0(%[[ARG0:.*]]: !s32i {{.*}}) -> !rec_foo
// CIR: %[[EXPR_ADDR:.*]] = cir.alloca !s32i, !cir.ptr<!s32i>, ["expr", init]
// CIR: cir.store %[[ARG0]], %[[EXPR_ADDR]]
// CIR: %[[EXPR:.*]] = cir.load{{.*}} %[[EXPR_ADDR]]
// CIR: %[[IS_CONSTANT:.*]] = cir.is_constant %[[EXPR]] : !s32i -> !cir.bool

// LLVM: define{{.*}} %struct.foo @test0(i32 %[[ARG0:.*]])
// LLVM: %[[EXPR_ADDR:.*]] = alloca i32
// LLVM: store i32 %[[ARG0]], ptr %[[EXPR_ADDR]]
// LLVM: %[[EXPR:.*]] = load i32, ptr %[[EXPR_ADDR]]
// LLVM: %[[IS_CONSTANT:.*]] = call i1 @llvm.is.constant.i32(i32 %[[EXPR]])

// OGCG: define{{.*}} i64 @test0(i32 {{.*}} %[[ARG0:.*]])
// OGCG: %[[EXPR_ADDR:.*]] = alloca i32
// OGCG: store i32 %[[ARG0]], ptr %[[EXPR_ADDR]]
// OGCG: %[[EXPR:.*]] = load i32, ptr %[[EXPR_ADDR]]
// OGCG: %[[IS_CONSTANT:.*]] = call i1 @llvm.is.constant.i32(i32 %[[EXPR]])

/* --- Pointer types */

int test1(void) {
return __builtin_constant_p(&a - 13);
}

// CIR: cir.func {{.*}} @test1() -> !s32i
// CIR: %[[TMP1:.*]] = cir.alloca !s32i, !cir.ptr<!s32i>, ["__retval"]
// CIR: %[[ZERO:.*]] = cir.const #cir.int<0> : !s32i
// CIR: cir.store %[[ZERO]], %[[TMP1]] : !s32i, !cir.ptr<!s32i>
// CIR: %[[TMP2:.*]] = cir.load %[[TMP1]] : !cir.ptr<!s32i>, !s32i
// CIR: cir.return %[[TMP2]] : !s32i

// LLVM: define{{.*}} i32 @test1()
// LLVM: %[[TMP1:.*]] = alloca i32
// LLVM: store i32 0, ptr %[[TMP1]]
// LLVM: %[[TMP2:.*]] = load i32, ptr %[[TMP1]]
// LLVM: ret i32 %[[TMP2]]

// OGCG: define{{.*}} i32 @test1()
// OGCG: ret i32 0

/* --- Aggregate types */

int b[] = {1, 2, 3};

int test2(void) {
return __builtin_constant_p(b);
}

// CIR: cir.func {{.*}} @test2() -> !s32i
// CIR: %[[TMP1:.*]] = cir.alloca !s32i, !cir.ptr<!s32i>, ["__retval"]
// CIR: %[[ZERO:.*]] = cir.const #cir.int<0> : !s32i
// CIR: cir.store %[[ZERO]], %[[TMP1]] : !s32i, !cir.ptr<!s32i>
// CIR: %[[TMP2:.*]] = cir.load %[[TMP1]] : !cir.ptr<!s32i>, !s32i
// CIR: cir.return %[[TMP2]] : !s32i

// LLVM: define{{.*}} i32 @test2()
// LLVM: %[[TMP1:.*]] = alloca i32
// LLVM: store i32 0, ptr %[[TMP1]]
// LLVM: %[[TMP2:.*]] = load i32, ptr %[[TMP1]]
// LLVM: ret i32 %[[TMP2]]

// OGCG: define{{.*}} i32 @test2()
// OGCG: ret i32 0

const char test3_c[] = {1, 2, 3, 0};

int test3(void) {
return __builtin_constant_p(test3_c);
}

// CIR: cir.func {{.*}} @test3() -> !s32i
// CIR: %[[TMP1:.*]] = cir.alloca !s32i, !cir.ptr<!s32i>, ["__retval"]
// CIR: %[[ZERO:.*]] = cir.const #cir.int<0> : !s32i
// CIR: cir.store %[[ZERO]], %[[TMP1]] : !s32i, !cir.ptr<!s32i>
// CIR: %[[TMP2:.*]] = cir.load %[[TMP1]] : !cir.ptr<!s32i>, !s32i
// CIR: cir.return %[[TMP2]] : !s32i

// LLVM: define{{.*}} i32 @test3()
// LLVM: %[[TMP1:.*]] = alloca i32
// LLVM: store i32 0, ptr %[[TMP1]]
// LLVM: %[[TMP2:.*]] = load i32, ptr %[[TMP1]]
// LLVM: ret i32 %[[TMP2]]

// OGCG: define{{.*}} i32 @test3()
// OGCG: ret i32 0

inline char test4_i(const char *x) {
return x[1];
}

int test4(void) {
return __builtin_constant_p(test4_i(test3_c));
}

// CIR: cir.func {{.*}} @test4() -> !s32i
// CIR: %[[TMP1:.*]] = cir.alloca !s32i, !cir.ptr<!s32i>, ["__retval"]
// CIR: %[[ZERO:.*]] = cir.const #cir.int<0> : !s32i
// CIR: cir.store %[[ZERO]], %[[TMP1]] : !s32i, !cir.ptr<!s32i>
// CIR: %[[TMP2:.*]] = cir.load %[[TMP1]] : !cir.ptr<!s32i>, !s32i
// CIR: cir.return %[[TMP2]] : !s32i

// LLVM: define{{.*}} i32 @test4()
// LLVM: %[[TMP1:.*]] = alloca i32
// LLVM: store i32 0, ptr %[[TMP1]]
// LLVM: %[[TMP2:.*]] = load i32, ptr %[[TMP1]]
// LLVM: ret i32 %[[TMP2]]

// OGCG: define{{.*}} i32 @test4()
// OGCG: ret i32 0

/* --- Constant global variables */

const int c = 42;

int test5(void) {
return __builtin_constant_p(c);
}

// CIR: cir.func {{.*}} @test5() -> !s32i
// CIR: %[[TMP1:.*]] = cir.alloca !s32i, !cir.ptr<!s32i>, ["__retval"]
// CIR: %[[ONE:.*]] = cir.const #cir.int<1> : !s32i
// CIR: cir.store %[[ONE]], %[[TMP1]] : !s32i, !cir.ptr<!s32i>
// CIR: %[[TMP2:.*]] = cir.load %[[TMP1]] : !cir.ptr<!s32i>, !s32i
// CIR: cir.return %[[TMP2]] : !s32i

// LLVM: define{{.*}} i32 @test5()
// LLVM: %[[TMP1:.*]] = alloca i32
// LLVM: store i32 1, ptr %[[TMP1]]
// LLVM: %[[TMP2:.*]] = load i32, ptr %[[TMP1]]
// LLVM: ret i32 %[[TMP2]]

// OGCG: define{{.*}} i32 @test5()
// OGCG: ret i32 1

/* --- Array types */

int arr[] = { 1, 2, 3 };

int test6(void) {
return __builtin_constant_p(arr[2]);
}

// CIR: cir.func {{.*}} @test6() -> !s32i
// CIR: %[[TWO:.*]] = cir.const #cir.int<2> : !s32i
// CIR: %[[ARR:.*]] = cir.get_global @arr : !cir.ptr<!cir.array<!s32i x 3>>
// CIR: %[[ARR_PTR:.*]] = cir.cast array_to_ptrdecay %[[ARR]] : !cir.ptr<!cir.array<!s32i x 3>> -> !cir.ptr<!s32i>
// CIR: %[[ELE_PTR:.*]] = cir.ptr_stride %[[ARR_PTR]], %[[TWO]] : (!cir.ptr<!s32i>, !s32i) -> !cir.ptr<!s32i>
// CIR: %[[ELE:.*]] = cir.load{{.*}} %[[ELE_PTR]] : !cir.ptr<!s32i>, !s32i
// CIR: %[[IS_CONSTANT:.*]] = cir.is_constant %[[ELE]] : !s32i -> !cir.bool

// LLVM: define {{.*}} i32 @test6()
// LLVM: %[[TMP1:.*]] = load i32, ptr getelementptr inbounds nuw (i8, ptr @arr, i64 8)
// LLVM: %[[TMP2:.*]] = call i1 @llvm.is.constant.i32(i32 %[[TMP1]])

// OGCG: define {{.*}} i32 @test6()
// OGCG: %[[TMP1:.*]] = load i32, ptr getelementptr inbounds ([3 x i32], ptr @arr, i64 0, i64 2)
// OGCG: %[[TMP2:.*]] = call i1 @llvm.is.constant.i32(i32 %[[TMP1]])

const int c_arr[] = { 1, 2, 3 };

int test7(void) {
return __builtin_constant_p(c_arr[2]);
}

// CIR: cir.func {{.*}} @test7() -> !s32i
// CIR: %[[TMP1:.*]] = cir.alloca !s32i, !cir.ptr<!s32i>, ["__retval"]
// CIR: %[[ONE:.*]] = cir.const #cir.int<1> : !s32i
// CIR: cir.store %[[ONE]], %[[TMP1]] : !s32i, !cir.ptr<!s32i>
// CIR: %[[TMP2:.*]] = cir.load %[[TMP1]] : !cir.ptr<!s32i>, !s32i
// CIR: cir.return %[[TMP2]] : !s32i

// LLVM: define{{.*}} i32 @test7()
// LLVM: %[[TMP1:.*]] = alloca i32
// LLVM: store i32 1, ptr %[[TMP1]]
// LLVM: %[[TMP2:.*]] = load i32, ptr %[[TMP1]]
// LLVM: ret i32 %[[TMP2]]

// OGCG: define{{.*}} i32 @test7()
// OGCG: ret i32 1

int test8(void) {
return __builtin_constant_p(c_arr);
}

// CIR: cir.func {{.*}} @test8() -> !s32i
// CIR: %[[TMP1:.*]] = cir.alloca !s32i, !cir.ptr<!s32i>, ["__retval"]
// CIR: %[[ZERO:.*]] = cir.const #cir.int<0> : !s32i
// CIR: cir.store %[[ZERO]], %[[TMP1]] : !s32i, !cir.ptr<!s32i>
// CIR: %[[TMP2:.*]] = cir.load %[[TMP1]] : !cir.ptr<!s32i>, !s32i
// CIR: cir.return %[[TMP2]] : !s32i

// LLVM: define{{.*}} i32 @test8()
// LLVM: %[[TMP1:.*]] = alloca i32
// LLVM: store i32 0, ptr %[[TMP1]]
// LLVM: %[[TMP2:.*]] = load i32, ptr %[[TMP1]]
// LLVM: ret i32 %[[TMP2]]

// OGCG: define{{.*}} i32 @test8()
// OGCG: ret i32 0

/* --- Function pointers */

int test9(void) {
return __builtin_constant_p(&test9);
}

// CIR: cir.func {{.*}} @test9() -> !s32i
// CIR: %[[TMP1:.*]] = cir.alloca !s32i, !cir.ptr<!s32i>, ["__retval"]
// CIR: %[[ZERO:.*]] = cir.const #cir.int<0> : !s32i
// CIR: cir.store %[[ZERO]], %[[TMP1]] : !s32i, !cir.ptr<!s32i>
// CIR: %[[TMP2:.*]] = cir.load %[[TMP1]] : !cir.ptr<!s32i>, !s32i
// CIR: cir.return %[[TMP2]] : !s32i

// LLVM: define{{.*}} i32 @test9()
// LLVM: %[[TMP1:.*]] = alloca i32
// LLVM: store i32 0, ptr %[[TMP1]]
// LLVM: %[[TMP2:.*]] = load i32, ptr %[[TMP1]]
// LLVM: ret i32 %[[TMP2]]

// OGCG: define{{.*}} i32 @test9()
// OGCG: ret i32 0

int test10(void) {
return __builtin_constant_p(&test10 != 0);
}

// CIR: cir.func {{.*}} @test10() -> !s32i
// CIR: %[[TMP1:.*]] = cir.alloca !s32i, !cir.ptr<!s32i>, ["__retval"]
// CIR: %[[ONE:.*]] = cir.const #cir.int<1> : !s32i
// CIR: cir.store %[[ONE]], %[[TMP1]] : !s32i, !cir.ptr<!s32i>
// CIR: %[[TMP2:.*]] = cir.load %[[TMP1]] : !cir.ptr<!s32i>, !s32i
// CIR: cir.return %[[TMP2]] : !s32i

// LLVM: define{{.*}} i32 @test10()
// LLVM: %[[TMP1:.*]] = alloca i32
// LLVM: store i32 1, ptr %[[TMP1]]
// LLVM: %[[TMP2:.*]] = load i32, ptr %[[TMP1]]
// LLVM: ret i32 %[[TMP2]]

// OGCG: define{{.*}} i32 @test10()
// OGCG: ret i32 1

int test11_f(void);
void test11(void) {
int a, b;
(void)__builtin_constant_p((a = b, test11_f()));
}

// CIR: cir.func {{.*}} @test11()
// CIR-NOT: call {{.*}}test11_f

// LLVM: define{{.*}} void @test11()
// LLVM-NOT: call {{.*}}test11_f

// OGCG: define{{.*}} void @test11()
// OGCG-NOT: call {{.*}}test11_f
Loading