|
| 1 | +#include <iostream> |
| 2 | +#include <memory> |
| 3 | +#include <random> |
| 4 | + |
| 5 | +#include "benchmark/benchmark.h" |
| 6 | + |
| 7 | +#define ITERATIONS 100000 |
| 8 | + |
| 9 | +template <typename T> |
| 10 | +using CSAFunc = T (*)(T *, T *, T *, T); |
| 11 | + |
| 12 | +// Find the last element in A above the given threshold, |
| 13 | +// with default loop vectorization settings. |
| 14 | +template <typename T> |
| 15 | +static T run_single_csa_only_autovec(T *A, T *B, T *C, T Threshold) { |
| 16 | + // Pick a default value that's out of range of the uniform distribution |
| 17 | + // created for 'A' in init_data below. |
| 18 | + T Result = 101; |
| 19 | + for (unsigned i = 0; i < ITERATIONS; i++) |
| 20 | + if (A[i] > Threshold) |
| 21 | + Result = A[i]; |
| 22 | + |
| 23 | + return Result; |
| 24 | +} |
| 25 | + |
| 26 | +// Find the last element in A above the given threshold, |
| 27 | +// with loop vectorization disabled. |
| 28 | +template <typename T> |
| 29 | +static T run_single_csa_only_novec(T *A, T *B, T *C, T Threshold) { |
| 30 | + // Pick a default value that's out of range of the uniform distribution |
| 31 | + // created for 'A' in init_data below. |
| 32 | + T Result = 101; |
| 33 | +#pragma clang loop vectorize(disable) interleave(disable) |
| 34 | + for (unsigned i = 0; i < ITERATIONS; i++) |
| 35 | + if (A[i] > Threshold) |
| 36 | + Result = A[i]; |
| 37 | + |
| 38 | + return Result; |
| 39 | +} |
| 40 | + |
| 41 | +// Find the last elements in A, B, and C above the given threshold, |
| 42 | +// with default loop vectorization settings. |
| 43 | +template <typename T> |
| 44 | +static T run_multi_csa_only_autovec(T *A, T *B, T *C, T Threshold) { |
| 45 | + // Pick a default value that's out of range of the uniform distribution |
| 46 | + // created for 'A', 'B', and 'C' in init_data below. |
| 47 | + T ResultA = 101; |
| 48 | + T ResultB = 101; |
| 49 | + T ResultC = 101; |
| 50 | + for (unsigned i = 0; i < ITERATIONS; i++) { |
| 51 | + if (A[i] > Threshold) |
| 52 | + ResultA = A[i]; |
| 53 | + if (B[i] > Threshold) |
| 54 | + ResultB = B[i]; |
| 55 | + if (C[i] > Threshold) |
| 56 | + ResultC = C[i]; |
| 57 | + } |
| 58 | + |
| 59 | + return ResultA ^ ResultB ^ ResultC; |
| 60 | +} |
| 61 | + |
| 62 | +// Find the last elements in A, B, and C above the given threshold, |
| 63 | +// with loop vectorization disabled. |
| 64 | +template <typename T> |
| 65 | +static T run_multi_csa_only_novec(T *A, T *B, T *C, T Threshold) { |
| 66 | + // Pick a default value that's out of range of the uniform distribution |
| 67 | + // created for 'A', 'B', and 'C' in init_data below. |
| 68 | + T ResultA = 101; |
| 69 | + T ResultB = 101; |
| 70 | + T ResultC = 101; |
| 71 | +#pragma clang loop vectorize(disable) interleave(disable) |
| 72 | + for (unsigned i = 0; i < ITERATIONS; i++) { |
| 73 | + if (A[i] > Threshold) |
| 74 | + ResultA = A[i]; |
| 75 | + if (B[i] > Threshold) |
| 76 | + ResultB = B[i]; |
| 77 | + if (C[i] > Threshold) |
| 78 | + ResultC = C[i]; |
| 79 | + } |
| 80 | + |
| 81 | + return ResultA ^ ResultB ^ ResultC; |
| 82 | +} |
| 83 | + |
| 84 | +// Find the last element in A above the given threshold, |
| 85 | +// with default loop vectorization settings. |
| 86 | +template <typename T> |
| 87 | +static T run_csa_with_arith_autovec(T *A, T *B, T *C, T Threshold) { |
| 88 | + // Pick a default value that's out of range of the uniform distribution |
| 89 | + // created for 'A' in init_data below. |
| 90 | + T Result = 101; |
| 91 | + for (unsigned i = 0; i < ITERATIONS; i++) { |
| 92 | + // Do some work to make the difference noticeable |
| 93 | + C[i] = A[i] * 13 + B[i] * 5; |
| 94 | + if (A[i] > Threshold) |
| 95 | + Result = A[i]; |
| 96 | + } |
| 97 | + |
| 98 | + return Result; |
| 99 | +} |
| 100 | + |
| 101 | +// Find the last element in A above the given threshold, |
| 102 | +// with loop vectorization disabled. |
| 103 | +template <typename T> |
| 104 | +static T run_csa_with_arith_novec(T *A, T *B, T* C, T Threshold) { |
| 105 | + // Pick a default value that's out of range of the uniform distribution |
| 106 | + // created for 'A' in init_data below. |
| 107 | + T Result = 101; |
| 108 | +#pragma clang loop vectorize(disable) interleave(disable) |
| 109 | + for (unsigned i = 0; i < ITERATIONS; i++) { |
| 110 | + // Do some work to make the difference noticeable |
| 111 | + C[i] = A[i] * 13 + B[i] * 5; |
| 112 | + if (A[i] > Threshold) |
| 113 | + Result = A[i]; |
| 114 | + } |
| 115 | + |
| 116 | + return Result; |
| 117 | +} |
| 118 | + |
| 119 | +// Initialize arrays A, B, and C with random numbers |
| 120 | +template <typename T> static void init_data(T *A, T* B, T *C) { |
| 121 | + std::uniform_int_distribution<T> dist(0, 100); |
| 122 | + std::mt19937 rng(12345); |
| 123 | + for (unsigned i = 0; i < ITERATIONS; i++) { |
| 124 | + A[i] = dist(rng); |
| 125 | + B[i] = dist(rng); |
| 126 | + C[i] = dist(rng); |
| 127 | + } |
| 128 | +} |
| 129 | + |
| 130 | +// Benchmark auto-vectorized version. |
| 131 | +template <typename T> |
| 132 | +static void __attribute__((always_inline)) |
| 133 | +benchmark_csa_autovec(benchmark::State &state, CSAFunc<T> VecFn, |
| 134 | + CSAFunc<T> NoVecFn, T Threshold) { |
| 135 | + std::unique_ptr<T[]> A(new T[ITERATIONS]); |
| 136 | + std::unique_ptr<T[]> B(new T[ITERATIONS]); |
| 137 | + std::unique_ptr<T[]> C(new T[ITERATIONS]); |
| 138 | + init_data(&A[0], &B[0], &C[0]); |
| 139 | + |
| 140 | +#ifdef BENCH_AND_VERIFY |
| 141 | + // Verify the vectorized and un-vectorized versions produce the same results. |
| 142 | + { |
| 143 | + T VecRes = VecFn(&A[0], &B[0], &C[0], Threshold); |
| 144 | + T NoVecRes = NoVecFn(&A[0], &B[0], &C[0], Threshold); |
| 145 | + // We're only interested in whether the conditional assignment results |
| 146 | + // were the same. |
| 147 | + if (VecRes != NoVecRes) { |
| 148 | + std::cerr << "ERROR: autovec result different to scalar result; " |
| 149 | + << VecRes << " != " << NoVecRes << "\n"; |
| 150 | + exit(1); |
| 151 | + } |
| 152 | + } |
| 153 | +#endif |
| 154 | + |
| 155 | + for (auto _ : state) { |
| 156 | + VecFn(&A[0], &B[0], &C[0], Threshold); |
| 157 | + benchmark::DoNotOptimize(A); |
| 158 | + benchmark::DoNotOptimize(B); |
| 159 | + benchmark::DoNotOptimize(C); |
| 160 | + benchmark::ClobberMemory(); |
| 161 | + } |
| 162 | +} |
| 163 | + |
| 164 | +// Benchmark version with vectorization disabled. |
| 165 | +template <typename T> |
| 166 | +static void __attribute__((always_inline)) |
| 167 | +benchmark_csa_novec(benchmark::State &state, CSAFunc<T> NoVecFn, T Threshold) { |
| 168 | + std::unique_ptr<T[]> A(new T[ITERATIONS]); |
| 169 | + std::unique_ptr<T[]> B(new T[ITERATIONS]); |
| 170 | + std::unique_ptr<T[]> C(new T[ITERATIONS]); |
| 171 | + init_data(&A[0], &B[0], &C[0]); |
| 172 | + |
| 173 | + for (auto _ : state) { |
| 174 | + NoVecFn(&A[0], &B[0], &C[0], Threshold); |
| 175 | + benchmark::DoNotOptimize(A); |
| 176 | + benchmark::DoNotOptimize(B); |
| 177 | + benchmark::DoNotOptimize(C); |
| 178 | + } |
| 179 | +} |
| 180 | + |
| 181 | +// Add benchmarks with and without auto-vectorization |
| 182 | +#define ADD_BENCHMARK(ty, Threshold) \ |
| 183 | + void BENCHMARK_single_csa_only_autovec_##ty##_(benchmark::State &state) { \ |
| 184 | + benchmark_csa_autovec<ty>(state, run_single_csa_only_autovec, \ |
| 185 | + run_single_csa_only_novec, Threshold); \ |
| 186 | + } \ |
| 187 | + BENCHMARK(BENCHMARK_single_csa_only_autovec_##ty##_)->Unit( \ |
| 188 | + benchmark::kNanosecond); \ |
| 189 | + \ |
| 190 | + void BENCHMARK_single_csa_only_novec_##ty##_(benchmark::State &state) { \ |
| 191 | + benchmark_csa_novec<ty>(state, run_single_csa_only_novec, Threshold); \ |
| 192 | + } \ |
| 193 | + BENCHMARK(BENCHMARK_single_csa_only_novec_##ty##_)->Unit( \ |
| 194 | + benchmark::kNanosecond); \ |
| 195 | + void BENCHMARK_multi_csa_only_autovec_##ty##_(benchmark::State &state) { \ |
| 196 | + benchmark_csa_autovec<ty>(state, run_multi_csa_only_autovec, \ |
| 197 | + run_multi_csa_only_novec, Threshold); \ |
| 198 | + } \ |
| 199 | + BENCHMARK(BENCHMARK_multi_csa_only_autovec_##ty##_)->Unit( \ |
| 200 | + benchmark::kNanosecond); \ |
| 201 | + \ |
| 202 | + void BENCHMARK_multi_csa_only_novec_##ty##_(benchmark::State &state) { \ |
| 203 | + benchmark_csa_novec<ty>(state, run_multi_csa_only_novec, Threshold); \ |
| 204 | + } \ |
| 205 | + BENCHMARK(BENCHMARK_multi_csa_only_novec_##ty##_)->Unit( \ |
| 206 | + benchmark::kNanosecond); \ |
| 207 | + void BENCHMARK_csa_with_arith_autovec_##ty##_(benchmark::State &state) { \ |
| 208 | + benchmark_csa_autovec<ty>(state, run_csa_with_arith_autovec, \ |
| 209 | + run_csa_with_arith_novec, Threshold); \ |
| 210 | + } \ |
| 211 | + BENCHMARK(BENCHMARK_csa_with_arith_autovec_##ty##_)->Unit( \ |
| 212 | + benchmark::kNanosecond); \ |
| 213 | + \ |
| 214 | + void BENCHMARK_csa_with_arith_novec_##ty##_(benchmark::State &state) { \ |
| 215 | + benchmark_csa_novec<ty>(state, run_csa_with_arith_novec, Threshold); \ |
| 216 | + } \ |
| 217 | + BENCHMARK(BENCHMARK_csa_with_arith_novec_##ty##_)->Unit( \ |
| 218 | + benchmark::kNanosecond); |
| 219 | + |
| 220 | +ADD_BENCHMARK(int32_t, 75) |
| 221 | +ADD_BENCHMARK(uint8_t, 90) |
| 222 | +ADD_BENCHMARK(int64_t, 60) |
0 commit comments