|
7 | 7 | import pickle |
8 | 8 | import time |
9 | 9 | from typing import List |
10 | | -import plotly.express as px |
11 | | - |
12 | 10 | import gradio as gr |
13 | 11 |
|
14 | 12 | from fastchat.serve.gradio_block_arena_anony import ( |
@@ -92,33 +90,25 @@ def build_visualizer(): |
92 | 90 |
|
93 | 91 | with gr.Tab("Price Analysis", id=1): |
94 | 92 | price_markdown = """ |
95 | | - ## *Price Analysis Visualizations* |
96 | | - Below is a scatterplot depicting a model’s arena score against its cost effectiveness. Start exploring and discover some interesting trends in the data! |
97 | | - """ |
98 | | - gr.Markdown(price_markdown) |
99 | | - model_keys = ['chatgpt-4o-latest', 'gemini-1.5-pro-exp-0827','gpt-4o-mini-2024-07-18','claude-3-5-sonnet-20240620','gemini-1.5-flash-exp-0827','llama-3.1-405b-instruct','gemini-1.5-pro-api-0514','mistral-large-2407','reka-core-20240722','gemini-1.5-flash-api-0514', 'deepseek-coder-v2-0724','yi-large','llama-3-70b-instruct','qwen2-72b-instruct','claude-3-haiku-20240307','llama-3.1-8b-instruct','mistral-large-2402','command-r','mixtral-8x22b-instruct-v0.1','gpt-3.5-turbo-0613'] |
100 | | - output_tokens_per_USD = [66.66666667000001,200.0,1666.666667,66.66666667000001,3333.333333,333.3333333,200.0,166.6666667,166.6666667,3333.333333,3333.333333,333.3333333,1265.8227849999998,1111.111111,800.0,11111.11111,166.6666667,666.6666667,166.6666667,500.0] |
101 | | - score=[1316.1559008799543,1300.8583398843484,1273.6004783067303,1270.113546648134,1270.530573909608,1266.244657076764,1259.2844314017723,1249.8268751367714,1229.2148108171098,1226.8769924152105,1214.5634252743123,1212.4668382698005,1206.3236747009742,1186.7832147344182,1178.5484948812955,1167.8793593807711,1157.271872307139,1148.6665817312062,1147.0325504217642,1117.0289441863001] |
102 | | - fig = px.scatter(x=output_tokens_per_USD, y=score, title="Quality vs. Cost Effectiveness", labels={ |
103 | | - "output_tokens_per_USD": "# of output tokens per USD (in thousands)", |
104 | | - "score": "Arena Score"}, log_x=True, text=model_keys) |
105 | | - fig.update_traces( |
106 | | - textposition="bottom center", |
107 | | - textfont=dict(size=16), |
108 | | - texttemplate='%{text}', |
109 | | - marker=dict(size=8), |
110 | | - hovertemplate=( |
111 | | - 'Model: %{text}<br>' # Show the model name |
112 | | - 'Output Tokens Per USD: %{x}<br>' # Show the x value (Output Price) |
113 | | - 'Arena Score: %{y}<br>' # Show the y value (Arena Score) |
114 | | - ) |
115 | | - ) |
116 | | - fig.update_xaxes(range=[1,4.5]) |
117 | | - fig.update_yaxes(range=[1100,1320]) |
118 | | - fig.update_layout(autosize=True, height=850, width=None, xaxis_title="# of output tokens per USD (in thousands)", yaxis_title= "Arena Score") |
| 93 | + ## *Welcome to the Price Explorer* |
| 94 | + This scatterplot displays a selection of the arena's models, showing their scores plotted against their cost-effectiveness. Using the plot, you can easily explore the model's price and compare it with their arena score. |
119 | 95 |
|
| 96 | + ### How to Use: |
| 97 | + - Hover Over Points: View the model's price, arena score, and organization. |
| 98 | + - Click to Explore: |
| 99 | + - Double-click a legend point to show only that organization's models on the scatterplot. |
| 100 | + - Single-click a legend point to hide that organization's models from the scatterplot. |
| 101 | +
|
| 102 | + Start exploring and discover interesting trends in the data! |
| 103 | + """ |
120 | 104 |
|
121 | | - gr.Plot(fig, elem_id="plotly-graph") |
| 105 | + gr.Markdown(price_markdown) |
| 106 | + frame = """ |
| 107 | + <iframe width="100%" scrolling="no" style="height: 1050px; border: 1px solid lightgrey; border-radius: 10px;" |
| 108 | + src="https://storage.googleapis.com/public-arena-no-cors/2024-12-20-figure.html"> |
| 109 | + </iframe> |
| 110 | + """ |
| 111 | + gr.HTML(frame) |
122 | 112 |
|
123 | 113 |
|
124 | 114 |
|
|
0 commit comments