Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions src/lmstudio/json_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,7 @@
# explicitly via `lmstudio.json_api`, it isn't exported
# implicitly as part of the top-level `lmstudio` API.
__all__ = [
"ActResult",
"AnyModelSpecifier",
"EmbeddingModelInfo",
"EmbeddingModelInstanceInfo",
Expand Down Expand Up @@ -151,7 +152,6 @@
"ModelSpecifierDict",
"ModelQuery",
"ModelQueryDict",
"OperationResult",
"PredictionResult",
"PredictionRoundResult",
"SerializedLMSExtendedError",
Expand Down Expand Up @@ -455,9 +455,9 @@ def _to_history_content(self) -> str:

@dataclass(kw_only=True, frozen=True, slots=True)
class PredictionRoundResult(PredictionResult[str]):
"""The result of a prediction within a multi-round tool using operation."""
"""The result of a prediction within a multi-round tool using action."""

round_index: int # The round within the operation that produced this result
round_index: int # The round within the action that produced this result

@classmethod
def from_result(cls, result: PredictionResult[str], round_index: int) -> Self:
Expand All @@ -471,10 +471,10 @@ def from_result(cls, result: PredictionResult[str], round_index: int) -> Self:


@dataclass(kw_only=True, frozen=True, slots=True)
class OperationResult:
"""Summary of a completed multi-round tool using operation."""
class ActResult:
"""Summary of a completed multi-round tool using action."""

# Actual operation output is reported via callbacks
# Detailed action results are reported via callbacks (for now)

# fmt: off
rounds: int
Expand Down Expand Up @@ -1073,7 +1073,7 @@ def __init__(
on_first_token: Callable[[], None] | None = None,
on_prediction_fragment: Callable[[LlmPredictionFragment], None] | None = None,
on_prompt_processing_progress: Callable[[float], None] | None = None,
# The remaining options are only relevant for multi-round tool operations
# The remaining options are only relevant for multi-round tool actions
handle_invalid_tool_request: Callable[
[LMStudioPredictionError, _ToolCallRequest | None], str
]
Expand Down Expand Up @@ -1359,7 +1359,7 @@ def parse_tools(
"""Split tool function definitions into server and client details."""
if not tools:
raise LMStudioValueError(
"Tool operation requires at least one tool to be defined."
"Tool using actions require at least one tool to be defined."
)
llm_tool_defs: list[LlmTool] = []
client_tool_map: dict[str, ClientToolSpec] = {}
Expand Down
32 changes: 20 additions & 12 deletions src/lmstudio/sync_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@
_ToolCallRequest,
)
from .json_api import (
ActResult,
AnyModelSpecifier,
AvailableModelBase,
ChannelEndpoint,
Expand Down Expand Up @@ -85,7 +86,6 @@
ModelSessionTypes,
ModelTypesEmbedding,
ModelTypesLlm,
OperationResult,
PredictionEndpoint,
PredictionFragmentEvent,
PredictionResult,
Expand Down Expand Up @@ -1539,7 +1539,7 @@ def respond(
# Multi-round predictions are currently a sync-only handle-only feature
# TODO: Refactor to allow for more code sharing with the async API
@sdk_public_api()
def operate(
def act(
self,
chat: Chat | ChatHistoryDataDict | str,
tools: Iterable[ToolFunctionDef | ToolFunctionDefDict],
Expand All @@ -1559,14 +1559,14 @@ def operate(
[LMStudioPredictionError, _ToolCallRequest | None], str
]
| None = None,
) -> OperationResult:
"""Request a response (with implicit tool use) in an ongoing assistant chat session."""
operation_start_time = time.perf_counter()
) -> ActResult:
"""Request a response (with implicit tool use) in an ongoing agent chat session."""
start_time = time.perf_counter()
# It is not yet possible to combine tool calling with requests for structured responses
response_format = None
if isinstance(chat, Chat):
chat._fetch_file_handles(self._session._fetch_file_handle)
op_chat: Chat = Chat.from_history(chat)
agent_chat: Chat = Chat.from_history(chat)
del chat
# Multiple rounds, until all tool calls are resolved or limit is reached
round_counter: Iterable[int]
Expand Down Expand Up @@ -1622,9 +1622,11 @@ def _wrapped_on_prompt_processing_progress(progress: float) -> None:
# Update the endpoint definition on each iteration in order to:
# * update the chat history with the previous round result
# * be able to disallow tool use when the rounds are limited
# TODO: Refactor endpoint API to avoid repeatedly performing the
# LlmPredictionConfig -> KvConfigStack transformation
endpoint = ChatResponseEndpoint(
self.identifier,
op_chat,
agent_chat,
response_format,
config,
None, # Multiple messages are generated per round
Expand Down Expand Up @@ -1658,23 +1660,29 @@ def _wrapped_on_prompt_processing_progress(progress: float) -> None:
tool_results = [
fut.result() for fut in as_completed(pending_tool_calls)
]
requests_message = op_chat._add_assistant_tool_requests(
requests_message = agent_chat._add_assistant_tool_requests(
prediction, tool_call_requests
)
results_message = op_chat._add_tool_results(tool_results)
results_message = agent_chat._add_tool_results(tool_results)
if on_message is not None:
on_message(requests_message)
on_message(results_message)
elif on_message is not None:
on_message(op_chat.add_assistant_response(prediction))
on_message(agent_chat.add_assistant_response(prediction))
if on_round_end is not None:
on_round_end(round_index)
if not tool_call_requests:
# No tool call requests -> we're done here
break
if round_index == final_round_index:
# We somehow received at least one tool call request,
# even though tools are omitted on the final round
err_msg = "Model requested tool use on final prediction round."
endpoint._handle_invalid_tool_request(err_msg)
break
num_rounds = round_index + 1
duration = time.perf_counter() - operation_start_time
return OperationResult(rounds=num_rounds, total_time_seconds=duration)
duration = time.perf_counter() - start_time
return ActResult(rounds=num_rounds, total_time_seconds=duration)

@sdk_public_api()
def apply_prompt_template(
Expand Down
12 changes: 6 additions & 6 deletions tests/test_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -162,7 +162,7 @@ def test_duplicate_tool_names_rejected() -> None:


@pytest.mark.lmstudio
def test_tool_operation(caplog: LogCap) -> None:
def test_tool_using_agent(caplog: LogCap) -> None:
# This is currently a sync-only API (it will be refactored after 1.0.0)

caplog.set_level(logging.DEBUG)
Expand All @@ -177,9 +177,9 @@ def test_tool_operation(caplog: LogCap) -> None:
# Ensure ignoring the round index passes static type checks
predictions: list[PredictionResult[str]] = []

op_result = llm.operate(chat, tools, on_prediction_completed=predictions.append)
act_result = llm.act(chat, tools, on_prediction_completed=predictions.append)
assert len(predictions) > 1
assert op_result.rounds == len(predictions)
assert act_result.rounds == len(predictions)
assert "220" in predictions[-1].content

for _logger_name, log_level, message in caplog.record_tuples:
Expand All @@ -194,7 +194,7 @@ def test_tool_operation(caplog: LogCap) -> None:


@pytest.mark.lmstudio
def test_tool_operation_callbacks(caplog: LogCap) -> None:
def test_tool_using_agent_callbacks(caplog: LogCap) -> None:
# This is currently a sync-only API (it will be refactored after 1.0.0)

caplog.set_level(logging.DEBUG)
Expand Down Expand Up @@ -222,7 +222,7 @@ def _append_fragment(f: LlmPredictionFragment, round_index: int) -> None:

# TODO: Also check on_prompt_processing_progress and handling invalid messages
# (although it isn't clear how to provoke calls to the latter without mocking)
op_result = llm.operate(
act_result = llm.act(
chat,
tools,
on_first_token=first_tokens.append,
Expand All @@ -232,7 +232,7 @@ def _append_fragment(f: LlmPredictionFragment, round_index: int) -> None:
on_round_end=round_ends.append,
on_prediction_completed=predictions.append,
)
num_rounds = op_result.rounds
num_rounds = act_result.rounds
sequential_round_indices = list(range(num_rounds))
assert num_rounds > 1
assert [p.round_index for p in predictions] == sequential_round_indices
Expand Down
Loading