|
| 1 | +# Smart Factory Monitoring App |
| 2 | + |
| 3 | +This project showcases a comprehensive smart factory monitoring application specifically designed to demonstrate **LocalStack for Snowflake** capabilities for local data cloud development, debugging, and testing throughout the entire software development lifecycle (SDLC). |
| 4 | + |
| 5 | +This application showcases the full spectrum of **LocalStack for Snowflake** features, such as: |
| 6 | + |
| 7 | +- Emulating a local Snowflake environment with databases, schemas, tables, and more. |
| 8 | +- Utilizing S3 service for automated data ingestion with Snowpipe integration. |
| 9 | +- Implementing dbt transformations for data quality and processing. |
| 10 | +- Building interactive dashboards with Streamlit and Snowflake Native Apps. |
| 11 | +- Orchestrating data transformations in an automated pipeline with Dagster. |
| 12 | +- Implementing comprehensive data & integration testing with pytest and dbt tests. |
| 13 | +- Using GitHub Actions for continuous integration to ensure automated testing. |
| 14 | +- Adding real-time alerting with a Python User-Defined Function (UDFs) and Snowflake Tasks. |
| 15 | +- Showcasing Zero-Copy Cloning for instant data recovery scenarios in case of data loss. |
| 16 | + |
| 17 | +The application serves as a complete reference implementation for developing Snowflake data solutions locally, enabling real-time monitoring of factory machines, automated data ingestion, quality testing, and predictive maintenance alerts—all running entirely on your local machine through LocalStack's Snowflake emulator. |
| 18 | + |
| 19 | +## Architecture |
| 20 | + |
| 21 | +The application implements a modern data pipeline architecture showcasing a realistic smart factory scenario: |
| 22 | + |
| 23 | +``` |
| 24 | +┌─────────────────┐ ┌──────────────┐ ┌─────────────────┐ |
| 25 | +│ Data Sources │───▶│ S3 Bucket │───▶│ Snowpipe │ |
| 26 | +│ (CSV Sensors) │ │ (LocalStack) │ │ (Auto-Ingest) │ |
| 27 | +└─────────────────┘ └──────────────┘ └─────────────────┘ |
| 28 | + │ |
| 29 | + ▼ |
| 30 | +┌─────────────────┐ ┌──────────────┐ ┌─────────────────┐ |
| 31 | +│ Streamlit │◀───│ dbt │◀───│ Snowflake │ |
| 32 | +│ Dashboard │ │ Transformations│ │ Emulator │ |
| 33 | +└─────────────────┘ └──────────────┘ └─────────────────┘ |
| 34 | + │ │ │ |
| 35 | + ▼ ▼ ▼ |
| 36 | +┌─────────────────┐ ┌──────────────┐ ┌─────────────────┐ |
| 37 | +│ Native App │ │ Dagster │ │ Email Alerts │ |
| 38 | +│ (Snowflake) │ │ Pipeline │ │ (SES) │ |
| 39 | +└─────────────────┘ └──────────────┘ └─────────────────┘ |
| 40 | +``` |
| 41 | + |
| 42 | +## Prerequisites |
| 43 | + |
| 44 | +Features in this sample app require a LocalStack for Snowflake license - make sure your Auth Token is configured in your terminal session. |
| 45 | + |
| 46 | +```bash |
| 47 | +export LOCALSTACK_AUTH_TOKEN=<your-token> |
| 48 | +``` |
| 49 | + |
| 50 | +- [Docker](https://docs.docker.com/get-docker/) |
| 51 | +- [`localstack` CLI](https://docs.localstack.cloud/getting-started/installation/#localstack-cli). |
| 52 | +- [AWS CLI](https://docs.localstack.cloud/user-guide/integrations/aws-cli/) with the [`awslocal` wrapper](https://docs.localstack.cloud/user-guide/integrations/aws-cli/#localstack-aws-cli-awslocal). |
| 53 | +- [Snowflake CLI](https://docs.snowflake.com/developer-guide/snowflake-cli/index) with a [`localstack` connection profile](https://snowflake.localstack.cloud/user-guide/integrations/snow-cli/). |
| 54 | +- [Python](https://www.python.org/downloads/) 3.10+ & [`pip`](https://pip.pypa.io/en/stable/installation/) |
| 55 | +- [`make`](https://www.gnu.org/software/make/) (**optional**, but recommended for running the sample application) |
| 56 | + |
| 57 | +## Installation |
| 58 | + |
| 59 | +To run the sample application, you need to install the required dependencies. |
| 60 | + |
| 61 | +First, clone the repository: |
| 62 | + |
| 63 | +```bash |
| 64 | +git clone https://github.com/localstack-samples/snowflake-smart-factory-app.git |
| 65 | +``` |
| 66 | + |
| 67 | +Then, navigate to the project directory: |
| 68 | + |
| 69 | +```bash |
| 70 | +cd snowflake-smart-factory-app |
| 71 | +``` |
| 72 | + |
| 73 | +Next, install the project dependencies by running the following command: |
| 74 | + |
| 75 | +```bash |
| 76 | +make install |
| 77 | +``` |
| 78 | + |
| 79 | +## Deployment |
| 80 | + |
| 81 | +Start LocalStack with the `LOCALSTACK_AUTH_TOKEN` pre-configured: |
| 82 | + |
| 83 | +```bash |
| 84 | +localstack auth set-token <your-auth-token> |
| 85 | +DOCKER_FLAGS='-e SF_LOG=trace' \ |
| 86 | +DEBUG=1 \ |
| 87 | +IMAGE_NAME=localstack/snowflake:latest \ |
| 88 | +localstack start |
| 89 | +``` |
| 90 | + |
| 91 | +To deploy the sample application, run the following command: |
| 92 | + |
| 93 | +```bash |
| 94 | +make deploy |
| 95 | +``` |
| 96 | + |
| 97 | +This will: |
| 98 | + |
| 99 | +- Setup Snowflake database, tables, and Snowpipe |
| 100 | +- Setup S3 bucket with event notifications |
| 101 | +- Upload sample sensor data (`data/sensor_data_batch_1.csv`) |
| 102 | +- Run dbt transformations to process the data |
| 103 | + |
| 104 | +You can also run the following command to deploy the Native app: |
| 105 | + |
| 106 | +```bash |
| 107 | +make app |
| 108 | +``` |
| 109 | + |
| 110 | +The output will be similar to the following: |
| 111 | + |
| 112 | +```bash |
| 113 | +App is now accessible at https://snowflake.localhost.localstack.cloud:4566/apps/test/test/FACTORY_APP_HARSHCASPER/ |
| 114 | +``` |
| 115 | + |
| 116 | +The dashboard provides: |
| 117 | + |
| 118 | +- Real-time machine health monitoring |
| 119 | +- Interactive sensor data visualizations |
| 120 | +- Predictive maintenance recommendations |
| 121 | +- Anomaly detection and alerting |
| 122 | + |
| 123 | +## Testing |
| 124 | + |
| 125 | +You can run full end-to-end integration tests using the following command: |
| 126 | + |
| 127 | +```bash |
| 128 | +make test |
| 129 | +``` |
| 130 | + |
| 131 | +This executes: |
| 132 | + |
| 133 | +- **Machine Health Tests**: Verifies health metrics calculations and thresholds |
| 134 | +- **Snowpipe Integration Tests**: Tests automated data ingestion workflows |
| 135 | + |
| 136 | +## Use Cases |
| 137 | + |
| 138 | +### Pipeline Orchestration |
| 139 | + |
| 140 | +To run automated dbt transformations on new data, you can launch a Dagster pipeline: |
| 141 | + |
| 142 | +```bash |
| 143 | +make pipeline |
| 144 | +``` |
| 145 | + |
| 146 | +This will: |
| 147 | + |
| 148 | +- Setup a pipeline monitoring dashboard |
| 149 | +- Create a S3 sensor to monitor new data |
| 150 | +- Trigger dbt transformations on new data |
| 151 | + |
| 152 | +To trigger dbt transformations on new data, you can run the following command: |
| 153 | + |
| 154 | +```bash |
| 155 | +make upload LATEST=true |
| 156 | +``` |
| 157 | + |
| 158 | +This will upload the latest sensor data batch (`data/sensor_data_batch_2.csv`) to the S3 bucket. The Dagster pipeline will automatically detect the new data and trigger the dbt transformations. |
| 159 | + |
| 160 | +To generate new sensor data, you can run the following command: |
| 161 | + |
| 162 | +```bash |
| 163 | +make generate |
| 164 | +``` |
| 165 | + |
| 166 | +### Real-Time Alerting |
| 167 | + |
| 168 | +To set up automated email alerts for critical machine conditions, you can run the following command: |
| 169 | + |
| 170 | +```bash |
| 171 | +make alerts |
| 172 | +``` |
| 173 | + |
| 174 | +This will: |
| 175 | + |
| 176 | +- Create a Python UDF to send email alerts with SES integration |
| 177 | +- Create a Snowflake Task to trigger the UDF every 30 seconds |
| 178 | +- Create a Snowflake View to query critical machine data |
| 179 | +- Send HTML emails for critical machine conditions |
| 180 | + |
| 181 | +In 30 seconds, you can query the SES developer endpoint to see the alert email: |
| 182 | + |
| 183 | +```bash |
| 184 | +curl -s http://localhost.localstack.cloud:4566/_aws/ses |
| 185 | +``` |
| 186 | + |
| 187 | +You can also use the [Mailhog extension](https://github.com/localstack/localstack-extensions/tree/main/mailhog) to view the alert email via a user-friendly interface. |
| 188 | + |
| 189 | +### Data Recovery with Zero-Copy Cloning |
| 190 | + |
| 191 | +To demonstrate instant data recovery capabilities, you can run the following command: |
| 192 | + |
| 193 | +```bash |
| 194 | +snow sql -f solutions/data_recovery_clones.sql -c localstack |
| 195 | +``` |
| 196 | + |
| 197 | +This showcases: |
| 198 | + |
| 199 | +- Instant table cloning without data duplication |
| 200 | +- Point-in-time recovery scenarios |
| 201 | +- Disaster recovery best practices |
| 202 | + |
| 203 | +## License |
| 204 | + |
| 205 | +This project is licensed under the [Apache License 2.0](LICENSE). |
0 commit comments