We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent e62ef2e commit 6170535Copy full SHA for 6170535
pyrasterframes/src/main/python/docs/supervised-learning.pymd
@@ -200,7 +200,7 @@ SELECT extent, crs,
200
rf_assemble_tile(column_index, row_index, prediction, 128, 128) as prediction,
201
rf_assemble_tile(column_index, row_index, B04, 128, 128) as red,
202
rf_assemble_tile(column_index, row_index, B03, 128, 128) as grn,
203
- rf_assemble_tile(column_index, row_index, B02, 128, 128) as blu,
+ rf_assemble_tile(column_index, row_index, B02, 128, 128) as blu
204
FROM scored
205
GROUP BY extent, crs
206
""")
@@ -221,7 +221,8 @@ red = sample['red'].cells
221
grn = sample['grn'].cells
222
blu = sample['blu'].cells
223
sample_rgb = np.concatenate([red[ :, :, None], grn[:, :, None] , blu[ :, :, None]], axis=2)
224
-np.imshow(sample_rgb)
+mins = np.nanmin(sample_rgb, axis=(0,1))
225
+plt.imshow((sample_rgb - mins)/ (np.nanmax(sample_rgb, axis=(0,1)) - mins))
226
```
227
228
Recall the label coding: 1 is forest (purple), 2 is cropland (green) and 3 is developed areas(yellow).
0 commit comments