@@ -763,8 +763,7 @@ Section cap_lang_rules.
763763 rewrite lookup_fmap.
764764 apply fmap_None.
765765 apply not_elem_of_dom.
766- enough (tidx ∉ dom cur_tb ∪ dom prev_tb) by set_solver.
767- rewrite dom_union_L in Hdomtbcompl.
766+ enough (tidx ∉ dom (cur_tb ∪ prev_tb)) by set_solver.
768767 rewrite Hdomtbcompl.
769768 apply not_elem_of_list_to_set.
770769 intro Htidx.
@@ -781,10 +780,8 @@ Section cap_lang_rules.
781780 rewrite lookup_fmap.
782781 apply fmap_None.
783782 rewrite HEC in Hdomtbcompl.
784- rewrite dom_union_L in Hdomtbcompl.
785- rewrite -not_elem_of_dom.
786- rewrite -Htbcompl.
787- assert (tidx ∉ dom cur_tb ∪ dom prev_tb); last set_solver.
783+ apply not_elem_of_dom.
784+ enough (tidx ∉ dom (cur_tb ∪ prev_tb)) by set_solver.
788785 rewrite Hdomtbcompl.
789786 apply not_elem_of_list_to_set.
790787 intro Htidx.
@@ -869,17 +866,17 @@ Section cap_lang_rules.
869866 {
870867 rewrite dom_insert_L disjoint_union_l; split ; auto.
871868 rewrite disjoint_singleton_l.
872- assert (enumcur σ ∉ dom prev_tb ∪ dom ( etable σ)) as H'; last set_solver+H' .
873- rewrite union_comm_L -dom_union_L Hdomtbcompl.
874- rewrite not_elem_of_list_to_set.
869+ enough (enumcur σ ∉ dom (( etable σ) ∪ prev_tb)) by set_solver.
870+ rewrite Hdomtbcompl.
871+ apply not_elem_of_list_to_set.
875872 rewrite elem_of_seq; solve_finz+.
876873 }
877874 {
878- rewrite dom_union_L dom_insert_L -union_assoc_L -dom_union_L Hdomtbcompl.
879875 replace ( enumcur σ + 1) with (S (enumcur σ)) by lia.
880876 rewrite seq_S; simpl.
881877 rewrite list_to_set_app_L.
882- set_solver+.
878+ rewrite -Hdomtbcompl.
879+ now set_solver.
883880 }
884881 { rewrite map_disjoint_insert_l; split; last done.
885882 rewrite -not_elem_of_dom.
0 commit comments