@@ -77,19 +77,25 @@ theorem setIntegral_congr_fun (hs : MeasurableSet s) (h : EqOn f g s) :
7777theorem setIntegral_congr_set (hst : s =ᵐ[μ] t) : ∫ x in s, f x ∂μ = ∫ x in t, f x ∂μ := by
7878 rw [Measure.restrict_congr_set hst]
7979
80- theorem integral_union_ae (hst : AEDisjoint μ s t) (ht : NullMeasurableSet t μ)
80+ theorem setIntegral_union₀ (hst : AEDisjoint μ s t) (ht : NullMeasurableSet t μ)
8181 (hfs : IntegrableOn f s μ) (hft : IntegrableOn f t μ) :
8282 ∫ x in s ∪ t, f x ∂μ = ∫ x in s, f x ∂μ + ∫ x in t, f x ∂μ := by
8383 simp only [Measure.restrict_union₀ hst ht, integral_add_measure hfs hft]
8484
85+ @ [deprecated (since := "2025-12-22" )] alias integral_union_ae := setIntegral_union₀
86+
8587theorem setIntegral_union (hst : Disjoint s t) (ht : MeasurableSet t) (hfs : IntegrableOn f s μ)
8688 (hft : IntegrableOn f t μ) : ∫ x in s ∪ t, f x ∂μ = ∫ x in s, f x ∂μ + ∫ x in t, f x ∂μ :=
87- integral_union_ae hst.aedisjoint ht.nullMeasurableSet hfs hft
89+ setIntegral_union₀ hst.aedisjoint ht.nullMeasurableSet hfs hft
8890
89- theorem integral_diff (ht : MeasurableSet t ) (hfs : IntegrableOn f s μ) (hts : t ⊆ s) :
91+ theorem integral_diff₀ (ht : NullMeasurableSet t μ ) (hfs : IntegrableOn f s μ) (hts : t ⊆ s) :
9092 ∫ x in s \ t, f x ∂μ = ∫ x in s, f x ∂μ - ∫ x in t, f x ∂μ := by
91- rw [eq_sub_iff_add_eq, ← setIntegral_union, diff_union_of_subset hts]
92- exacts [disjoint_sdiff_self_left, ht, hfs.mono_set diff_subset, hfs.mono_set hts]
93+ rw [eq_sub_iff_add_eq, ← setIntegral_union₀, diff_union_of_subset hts]
94+ exacts [disjoint_sdiff_self_left.aedisjoint, ht, hfs.mono_set diff_subset, hfs.mono_set hts]
95+
96+ theorem integral_diff (ht : MeasurableSet t) (hfs : IntegrableOn f s μ) (hts : t ⊆ s) :
97+ ∫ x in s \ t, f x ∂μ = ∫ x in s, f x ∂μ - ∫ x in t, f x ∂μ :=
98+ integral_diff₀ ht.nullMeasurableSet hfs hts
9399
94100theorem integral_inter_add_diff₀ (ht : NullMeasurableSet t μ) (hfs : IntegrableOn f s μ) :
95101 ∫ x in s ∩ t, f x ∂μ + ∫ x in s \ t, f x ∂μ = ∫ x in s, f x ∂μ := by
@@ -138,7 +144,7 @@ theorem setIntegral_univ : ∫ x in univ, f x ∂μ = ∫ x, f x ∂μ := by rw
138144
139145theorem integral_add_compl₀ (hs : NullMeasurableSet s μ) (hfi : Integrable f μ) :
140146 ∫ x in s, f x ∂μ + ∫ x in sᶜ, f x ∂μ = ∫ x, f x ∂μ := by
141- have := integral_union_ae disjoint_compl_right.aedisjoint
147+ have := setIntegral_union₀ disjoint_compl_right.aedisjoint
142148 hs.compl hfi.integrableOn hfi.integrableOn
143149 rw [← this, union_compl_self, setIntegral_univ]
144150
@@ -246,31 +252,39 @@ theorem integral_piecewise [DecidablePred (· ∈ s)] (hs : MeasurableSet s) (hf
246252 integral_add' (hf.integrable_indicator hs) (hg.integrable_indicator hs.compl),
247253 integral_indicator hs, integral_indicator hs.compl]
248254
249- theorem tendsto_setIntegral_of_monotone
255+ theorem tendsto_setIntegral_of_monotone₀
250256 {ι : Type *} [Preorder ι] [(atTop : Filter ι).IsCountablyGenerated]
251- {s : ι → Set X} (hsm : ∀ i, MeasurableSet (s i)) (h_mono : Monotone s)
257+ {s : ι → Set X} (hsm : ∀ i, NullMeasurableSet (s i) μ ) (h_mono : Monotone s)
252258 (hfi : IntegrableOn f (⋃ n, s n) μ) :
253259 Tendsto (fun i => ∫ x in s i, f x ∂μ) atTop (𝓝 (∫ x in ⋃ n, s n, f x ∂μ)) := by
254260 refine .of_neBot_imp fun hne ↦ ?_
255261 have := (atTop_neBot_iff.mp hne).2
256262 have hfi' : ∫⁻ x in ⋃ n, s n, ‖f x‖₊ ∂μ < ∞ := hfi.2
257263 set S := ⋃ i, s i
258- have hSm : MeasurableSet S := MeasurableSet.iUnion_of_monotone h_mono hsm
264+ have hSm : NullMeasurableSet S μ := MeasurableSet.iUnion_of_monotone h_mono hsm
259265 have hsub {i} : s i ⊆ S := subset_iUnion s i
260- rw [← withDensity_apply _ hSm] at hfi'
266+ rw [← withDensity_apply₀ _ hSm] at hfi'
261267 set ν := μ.withDensity (‖f ·‖ₑ) with hν
262268 refine Metric.nhds_basis_closedBall.tendsto_right_iff.2 fun ε ε0 => ?_
263269 lift ε to ℝ≥0 using ε0 .le
264270 have : ∀ᶠ i in atTop, ν (s i) ∈ Icc (ν S - ε) (ν S + ε) :=
265271 tendsto_measure_iUnion_atTop h_mono (ENNReal.Icc_mem_nhds hfi'.ne (ENNReal.coe_pos.2 ε0 ).ne')
266272 filter_upwards [this] with i hi
267- rw [mem_closedBall_iff_norm', ← integral_diff (hsm i) hfi hsub, ← coe_nnnorm, NNReal.coe_le_coe, ←
268- ENNReal.coe_le_coe]
273+ rw [mem_closedBall_iff_norm', ← integral_diff₀ (hsm i) hfi hsub, ← coe_nnnorm, NNReal.coe_le_coe,
274+ ← ENNReal.coe_le_coe]
269275 refine (enorm_integral_le_lintegral_enorm _).trans ?_
270- rw [← withDensity_apply _ (hSm.diff (hsm _)), ← hν, measure_diff hsub (hsm _).nullMeasurableSet]
276+ have hsm' : NullMeasurableSet (s i) ν := (hsm i).mono_ac (withDensity_absolutelyContinuous ..)
277+ rw [← withDensity_apply₀ _ (hSm.diff (hsm _)), ← hν, measure_diff hsub hsm']
271278 exacts [tsub_le_iff_tsub_le.mp hi.1 ,
272279 (hi.2 .trans_lt <| ENNReal.add_lt_top.2 ⟨hfi', ENNReal.coe_lt_top⟩).ne]
273280
281+ theorem tendsto_setIntegral_of_monotone
282+ {ι : Type *} [Preorder ι] [(atTop : Filter ι).IsCountablyGenerated]
283+ {s : ι → Set X} (hsm : ∀ i, MeasurableSet (s i)) (h_mono : Monotone s)
284+ (hfi : IntegrableOn f (⋃ n, s n) μ) :
285+ Tendsto (fun i => ∫ x in s i, f x ∂μ) atTop (𝓝 (∫ x in ⋃ n, s n, f x ∂μ)) :=
286+ tendsto_setIntegral_of_monotone₀ (hsm · |>.nullMeasurableSet) h_mono hfi
287+
274288theorem tendsto_setIntegral_of_antitone
275289 {ι : Type *} [Preorder ι] [(atTop : Filter ι).IsCountablyGenerated]
276290 {s : ι → Set X} (hsm : ∀ i, MeasurableSet (s i)) (h_anti : Antitone s)
0 commit comments