88public import Mathlib.Dynamics.BirkhoffSum.Average
99public import Mathlib.MeasureTheory.MeasurableSpace.Invariants
1010public import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic
11- import Mathlib.Algebra.Order.Group.PartialSups
12- import Mathlib.Algebra.Order.Ring.Star
13- import Mathlib.Data.Real.StarOrdered
14- import Mathlib.Dynamics.BirkhoffSum.QuasiMeasurePreserving
15- import Mathlib.MeasureTheory.Integral.DominatedConvergence
16- import Mathlib.Topology.Algebra.Module.WeakDual
11+ public import Mathlib.Algebra.Order.Group.PartialSups
12+ public import Mathlib.Algebra.Order.Ring.Star
13+ public import Mathlib.Data.Real.StarOrdered
14+ public import Mathlib.Dynamics.BirkhoffSum.QuasiMeasurePreserving
15+ public import Mathlib.MeasureTheory.Integral.DominatedConvergence
16+ public import Mathlib.Topology.Algebra.Module.WeakDual
1717
1818/-!
1919# Pointwise Ergodic Theorem
@@ -38,6 +38,8 @@ of `f`-invariant sets. This is used explicitly during this proof and also in the
3838
3939variable {α : Type *}
4040
41+ open MeasureTheory Measure MeasurableSpace Filter Topology
42+
4143section BirkhoffMax
4244
4345/-- The maximum of `birkhoffSum f g i` for `i` ranging from `0` to `n`. -/
@@ -105,8 +107,6 @@ lemma birkhoffMax_measurable [MeasurableSpace α] {f : α → α} (hf : Measurab
105107
106108section MeasurePreserving
107109
108- open MeasureTheory Measure MeasurableSpace Filter Topology
109-
110110variable {f : α → α} [MeasurableSpace α] (μ : Measure α := by volume_tac) {g : α → ℝ} {n}
111111 (hf : MeasurePreserving f μ μ) (hg : Integrable g μ)
112112
@@ -190,12 +190,12 @@ end PR
190190
191191section BirkhoffSup
192192
193- def birkhoffSupSet (f : α → α) (g : α → ℝ) : Set α := {x | ∃ n : ℕ, birkhoffSum f g n x > 0 }
193+ def birkhoffSupSet (f : α → α) (g : α → ℝ) : Set α := {x | ∃ n : ℕ, 0 < birkhoffSum f g n x}
194194
195195lemma birkhoffSupSet_eq_iSup_birkhoffMax_support {f : α → α} {g : α → ℝ} :
196196 birkhoffSupSet f g = ⋃ n : ℕ, (birkhoffMax f g n).support := by
197197 ext x
198- simp only [birkhoffSupSet, gt_iff_lt, Set.mem_setOf_eq, Set.mem_iUnion, Function.mem_support]
198+ simp only [birkhoffSupSet, Set.mem_setOf_eq, Set.mem_iUnion, Function.mem_support]
199199 constructor
200200 · refine fun ⟨n, hn⟩ => ⟨n, ?_⟩
201201 apply ne_of_gt
@@ -212,8 +212,6 @@ lemma birkhoffSupSet_eq_iSup_birkhoffMax_support {f : α → α} {g : α → ℝ
212212
213213section MeasurePreserving
214214
215- open MeasureTheory Measure MeasurableSpace Filter Topology
216-
217215variable {f : α → α} [MeasurableSpace α] (μ : Measure α := by volume_tac) {g : α → ℝ} {n}
218216 (hf : MeasurePreserving f μ μ) (hg : Integrable g μ)
219217
@@ -241,7 +239,36 @@ theorem setIntegral_nonneg_on_birkhoffSupSet :
241239 intro n
242240 exact setIntegral_nonneg_on_birkhoffMax_support μ hf hg
243241
242+ def birkhoffAverageSupSet (f : α → α) (g : α → ℝ) (a : ℝ) : Set α :=
243+ {x | ∃ n : ℕ, a < birkhoffAverage ℝ f g n x}
244+
245+ theorem birkhoffAverageSupSet_eq_birkhoffSupSet {x} {a : ℝ} (hn : 0 < n) :
246+ a < birkhoffAverage ℝ f g n x ↔ 0 < birkhoffSum f (g - fun _ ↦ a) n x := by
247+ nth_rw 2 [←smul_lt_smul_iff_of_pos_left (a := (↑n : ℝ)⁻¹) (by norm_num [hn])]
248+ rw [smul_zero, ←birkhoffAverage, birkhoffAverage_sub]
249+ simp only [Pi.sub_apply, sub_pos]
250+ nth_rw 2 [birkhoffAverage_of_comp_eq rfl hn.ne']
251+
252+ theorem setIntegral_nonneg_on_birkhoffSupSet' [IsFiniteMeasure μ] (a : ℝ) :
253+ μ.real (birkhoffSupSet f g) • a ≤ ∫ x in birkhoffSupSet f g, g x ∂μ := by
254+ calc
255+ _ = ∫ x in birkhoffSupSet f g, a ∂μ := by rw [setIntegral_const]
256+ _ ≤ ∫ x in birkhoffSupSet f g, a ∂μ + ∫ (x : α) in birkhoffSupSet f g, g x ∂μ := by sorry
257+
258+ theorem setIntegral_nonneg_on_birkhoffSupSet'' (a : ℝ) :
259+ a * μ.real (birkhoffSupSet f g) ≤ ‖hg.toL1‖ := by
260+ sorry
261+
244262end MeasurePreserving
245263
246264end BirkhoffSup
247265
266+ noncomputable section BirkhoffAverage
267+
268+ variable {f : α → α} [MeasurableSpace α] (μ : Measure α := by volume_tac) {g : α → ℝ} {n}
269+ (hf : MeasurePreserving f μ μ) (hg : Integrable g μ)
270+
271+ def birkhoffOscillation (f : α → α) (g : α → ℝ) (x : α) : ℝ :=
272+ limsup (birkhoffAverage ℝ f g · x) atTop - liminf (birkhoffAverage ℝ f g · x) atTop
273+
274+ end BirkhoffAverage
0 commit comments