Skip to content

Commit e3ae3d3

Browse files
committed
temp
1 parent 74afafe commit e3ae3d3

File tree

1 file changed

+39
-12
lines changed

1 file changed

+39
-12
lines changed

Mathlib/Dynamics/BirkhoffSum/Pointwise.lean

Lines changed: 39 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -8,12 +8,12 @@ module
88
public import Mathlib.Dynamics.BirkhoffSum.Average
99
public import Mathlib.MeasureTheory.MeasurableSpace.Invariants
1010
public import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic
11-
import Mathlib.Algebra.Order.Group.PartialSups
12-
import Mathlib.Algebra.Order.Ring.Star
13-
import Mathlib.Data.Real.StarOrdered
14-
import Mathlib.Dynamics.BirkhoffSum.QuasiMeasurePreserving
15-
import Mathlib.MeasureTheory.Integral.DominatedConvergence
16-
import Mathlib.Topology.Algebra.Module.WeakDual
11+
public import Mathlib.Algebra.Order.Group.PartialSups
12+
public import Mathlib.Algebra.Order.Ring.Star
13+
public import Mathlib.Data.Real.StarOrdered
14+
public import Mathlib.Dynamics.BirkhoffSum.QuasiMeasurePreserving
15+
public import Mathlib.MeasureTheory.Integral.DominatedConvergence
16+
public import Mathlib.Topology.Algebra.Module.WeakDual
1717

1818
/-!
1919
# Pointwise Ergodic Theorem
@@ -38,6 +38,8 @@ of `f`-invariant sets. This is used explicitly during this proof and also in the
3838

3939
variable {α : Type*}
4040

41+
open MeasureTheory Measure MeasurableSpace Filter Topology
42+
4143
section BirkhoffMax
4244

4345
/-- The maximum of `birkhoffSum f g i` for `i` ranging from `0` to `n`. -/
@@ -105,8 +107,6 @@ lemma birkhoffMax_measurable [MeasurableSpace α] {f : α → α} (hf : Measurab
105107

106108
section MeasurePreserving
107109

108-
open MeasureTheory Measure MeasurableSpace Filter Topology
109-
110110
variable {f : α → α} [MeasurableSpace α] (μ : Measure α := by volume_tac) {g : α → ℝ} {n}
111111
(hf : MeasurePreserving f μ μ) (hg : Integrable g μ)
112112

@@ -190,12 +190,12 @@ end PR
190190

191191
section BirkhoffSup
192192

193-
def birkhoffSupSet (f : α → α) (g : α → ℝ) : Set α := {x | ∃ n : ℕ, birkhoffSum f g n x > 0}
193+
def birkhoffSupSet (f : α → α) (g : α → ℝ) : Set α := {x | ∃ n : ℕ, 0 < birkhoffSum f g n x}
194194

195195
lemma birkhoffSupSet_eq_iSup_birkhoffMax_support {f : α → α} {g : α → ℝ} :
196196
birkhoffSupSet f g = ⋃ n : ℕ, (birkhoffMax f g n).support := by
197197
ext x
198-
simp only [birkhoffSupSet, gt_iff_lt, Set.mem_setOf_eq, Set.mem_iUnion, Function.mem_support]
198+
simp only [birkhoffSupSet, Set.mem_setOf_eq, Set.mem_iUnion, Function.mem_support]
199199
constructor
200200
· refine fun ⟨n, hn⟩ => ⟨n, ?_⟩
201201
apply ne_of_gt
@@ -212,8 +212,6 @@ lemma birkhoffSupSet_eq_iSup_birkhoffMax_support {f : α → α} {g : α → ℝ
212212

213213
section MeasurePreserving
214214

215-
open MeasureTheory Measure MeasurableSpace Filter Topology
216-
217215
variable {f : α → α} [MeasurableSpace α] (μ : Measure α := by volume_tac) {g : α → ℝ} {n}
218216
(hf : MeasurePreserving f μ μ) (hg : Integrable g μ)
219217

@@ -241,7 +239,36 @@ theorem setIntegral_nonneg_on_birkhoffSupSet :
241239
intro n
242240
exact setIntegral_nonneg_on_birkhoffMax_support μ hf hg
243241

242+
def birkhoffAverageSupSet (f : α → α) (g : α → ℝ) (a : ℝ) : Set α :=
243+
{x | ∃ n : ℕ, a < birkhoffAverage ℝ f g n x}
244+
245+
theorem birkhoffAverageSupSet_eq_birkhoffSupSet {x} {a : ℝ} (hn : 0 < n) :
246+
a < birkhoffAverage ℝ f g n x ↔ 0 < birkhoffSum f (g - fun _ ↦ a) n x := by
247+
nth_rw 2 [←smul_lt_smul_iff_of_pos_left (a := (↑n : ℝ)⁻¹) (by norm_num [hn])]
248+
rw [smul_zero, ←birkhoffAverage, birkhoffAverage_sub]
249+
simp only [Pi.sub_apply, sub_pos]
250+
nth_rw 2 [birkhoffAverage_of_comp_eq rfl hn.ne']
251+
252+
theorem setIntegral_nonneg_on_birkhoffSupSet' [IsFiniteMeasure μ] (a : ℝ) :
253+
μ.real (birkhoffSupSet f g) • a ≤ ∫ x in birkhoffSupSet f g, g x ∂μ := by
254+
calc
255+
_ = ∫ x in birkhoffSupSet f g, a ∂μ := by rw [setIntegral_const]
256+
_ ≤ ∫ x in birkhoffSupSet f g, a ∂μ + ∫ (x : α) in birkhoffSupSet f g, g x ∂μ := by sorry
257+
258+
theorem setIntegral_nonneg_on_birkhoffSupSet'' (a : ℝ) :
259+
a * μ.real (birkhoffSupSet f g) ≤ ‖hg.toL1‖ := by
260+
sorry
261+
244262
end MeasurePreserving
245263

246264
end BirkhoffSup
247265

266+
noncomputable section BirkhoffAverage
267+
268+
variable {f : α → α} [MeasurableSpace α] (μ : Measure α := by volume_tac) {g : α → ℝ} {n}
269+
(hf : MeasurePreserving f μ μ) (hg : Integrable g μ)
270+
271+
def birkhoffOscillation (f : α → α) (g : α → ℝ) (x : α) : ℝ :=
272+
limsup (birkhoffAverage ℝ f g · x) atTop - liminf (birkhoffAverage ℝ f g · x) atTop
273+
274+
end BirkhoffAverage

0 commit comments

Comments
 (0)