|
| 1 | +import theano as _th |
| 2 | +import theano.tensor as _T |
| 3 | + |
| 4 | + |
| 5 | +class Module: |
| 6 | + |
| 7 | + def __init__(self): |
| 8 | + self.training_mode = True |
| 9 | + |
| 10 | + self.fn_forward = None |
| 11 | + self.fn_accum_grads = None |
| 12 | + |
| 13 | + def reset(self): |
| 14 | + pass |
| 15 | + |
| 16 | + #def __hash__(self): |
| 17 | + # raise NotImplementedError("You *need* to reimplement hash, even if it's just python's default. See the documentation for more info.") |
| 18 | + |
| 19 | + def zero_grad_parameters(self): |
| 20 | + _, grads = self.parameters() |
| 21 | + for grad in grads: |
| 22 | + grad.set_value(0 * grad.get_value()) |
| 23 | + |
| 24 | + def parameters(self): |
| 25 | + params, grads = [], [] |
| 26 | + |
| 27 | + if self.training_mode and hasattr(self, 'weight'): |
| 28 | + assert hasattr(self, 'grad_weight'), "The layer {} has a `weight` variable but no `grad_weight`, you probably forget to implement it.".format(type(self)) |
| 29 | + params += [self.weight] |
| 30 | + grads += [self.grad_weight] |
| 31 | + |
| 32 | + if self.training_mode and hasattr(self, 'bias'): |
| 33 | + assert hasattr(self, 'grad_bias'), "The layer {} has a `bias` variable but no `grad_bias`, you probably forget to implement it.".format(type(self)) |
| 34 | + params += [self.bias] |
| 35 | + grads += [self.grad_bias] |
| 36 | + |
| 37 | + return params, grads |
| 38 | + |
| 39 | + def evaluate(self): |
| 40 | + self.training_mode = False |
| 41 | + |
| 42 | + def training(self): |
| 43 | + self.training_mode = True |
| 44 | + |
| 45 | + def symb_forward(self, symb_input): |
| 46 | + raise NotImplementedError |
| 47 | + |
| 48 | + def forward(self, data): |
| 49 | + if self.fn_forward is None: |
| 50 | + symb_in = _T.TensorType(_th.config.floatX, (False,) * data.ndim)('X') |
| 51 | + symb_out = self.symb_forward(symb_in) |
| 52 | + self.fn_forward = _th.function(inputs=[symb_in], outputs=symb_out) |
| 53 | + |
| 54 | + return self.fn_forward(data) |
| 55 | + |
| 56 | + def accumulate_gradients(self, data_in, data_tgt, loss): |
| 57 | + if self.fn_accum_grads is None: |
| 58 | + symb_in = _T.TensorType(_th.config.floatX, (False,) * data_in.ndim)('X') |
| 59 | + symb_tgt = _T.TensorType(_th.config.floatX, (False,) * data_tgt.ndim)('T') |
| 60 | + symb_out = self.symb_forward(symb_in) |
| 61 | + symb_err = loss.symb_forward(symb_out, symb_tgt) |
| 62 | + |
| 63 | + params, grads = self.parameters() |
| 64 | + symb_grads = _th.grad(cost=symb_err, wrt=params) |
| 65 | + |
| 66 | + grads_updates = [(grad, grad + symb_grad) for grad, symb_grad in zip(grads, symb_grads)] |
| 67 | + self.fn_accum_grads = _th.function( |
| 68 | + inputs=[symb_in, symb_tgt], |
| 69 | + updates=grads_updates |
| 70 | + ) |
| 71 | + |
| 72 | + self.fn_accum_grads(data_in, data_tgt) |
0 commit comments