We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent 9fc5dea commit 4290690Copy full SHA for 4290690
DeepFried2/zoo/vgg16.py
@@ -8,22 +8,22 @@ def model(fully_conv=True):
8
return df.Sequential(
9
conv3( 3, 64), df.ReLU(),
10
conv3( 64, 64), df.ReLU(),
11
- df.SpatialMaxPoolingCUDNN((2,2)),
+ df.PoolingCUDNN((2,2)),
12
conv3( 64,128), df.ReLU(),
13
conv3(128,128), df.ReLU(),
14
15
conv3(128,256), df.ReLU(),
16
conv3(256,256), df.ReLU(),
17
18
19
conv3(256,512), df.ReLU(),
20
conv3(512,512), df.ReLU(),
21
22
23
24
25
26
27
*_vgg.model_head(fully_conv)
28
)
29
DeepFried2/zoo/vgg19.py
@@ -8,25 +8,25 @@ def model(fully_conv=True):
30
31
32
examples/MNIST/model.py
@@ -23,12 +23,12 @@ def lenet_cudnn():
model.add(df.SpatialConvolutionCUDNN(1, 32, (5,5), border='same', bias=False))
model.add(df.BatchNormalization(32))
model.add(df.ReLU())
- model.add(df.SpatialMaxPoolingCUDNN((2,2)))
+ model.add(df.PoolingCUDNN((2,2)))
model.add(df.SpatialConvolutionCUDNN(32, 64, (5,5), border='same', bias=False))
model.add(df.BatchNormalization(64))
model.add(df.Reshape(-1, 7*7*64))
33
34
model.add(df.Linear(7*7*64, 100, bias=False))
examples/MultipleOutputs/model.py
@@ -9,13 +9,13 @@ def cnn(size, *head):
df.BatchNormalization(32), df.ReLU(),
df.SpatialConvolutionCUDNN(32, 32, (3,3), border='same', bias=False),
df.SpatialConvolutionCUDNN(32, 64, (3,3), border='same', bias=False),
df.BatchNormalization(64), df.ReLU(),
df.SpatialConvolutionCUDNN(64, 64, (3,3), border='same', bias=False),
df.Reshape(-1, 64*(size//4)**2),
examples/Optimizers/model.py
@@ -23,12 +23,12 @@ def lenet():
model.add(df.SpatialConvolutionCUDNN(1, 32, (5,5), border=(2,2), with_bias=False))
model.add(df.SpatialConvolutionCUDNN(32, 64, (5,5), border=(2,2), with_bias=False))
model.add(df.Linear(7*7*64, 100, with_bias=False))
0 commit comments