|
| 1 | +import DeepFried2 as df |
| 2 | + |
| 3 | + |
| 4 | +def net(): |
| 5 | + model = df.Sequential() |
| 6 | + model.add(df.Linear(28*28, 100)) |
| 7 | + model.add(df.ReLU()) |
| 8 | + |
| 9 | + model.add(df.Linear(100, 100)) |
| 10 | + model.add(df.ReLU()) |
| 11 | + |
| 12 | + model.add(df.Linear(100, 100)) |
| 13 | + model.add(df.ReLU()) |
| 14 | + |
| 15 | + model.add(df.Linear(100, 10)) |
| 16 | + model.add(df.SoftMax()) |
| 17 | + return model |
| 18 | + |
| 19 | + |
| 20 | +def lenet(): |
| 21 | + model = df.Sequential() |
| 22 | + model.add(df.Reshape(-1, 1, 28, 28)) |
| 23 | + model.add(df.SpatialConvolutionCUDNN(1, 32, 5, 5, 1, 1, 2, 2, with_bias=False)) |
| 24 | + model.add(df.BatchNormalization(32)) |
| 25 | + model.add(df.ReLU()) |
| 26 | + model.add(df.SpatialMaxPoolingCUDNN(2, 2)) |
| 27 | + |
| 28 | + model.add(df.SpatialConvolutionCUDNN(32, 64, 5, 5, 1, 1, 2, 2, with_bias=False)) |
| 29 | + model.add(df.BatchNormalization(64)) |
| 30 | + model.add(df.ReLU()) |
| 31 | + model.add(df.SpatialMaxPoolingCUDNN(2, 2)) |
| 32 | + model.add(df.Reshape(-1, 7*7*64)) |
| 33 | + |
| 34 | + model.add(df.Linear(7*7*64, 100, with_bias=False)) |
| 35 | + model.add(df.BatchNormalization(100)) |
| 36 | + model.add(df.ReLU()) |
| 37 | + model.add(df.Dropout(0.5)) |
| 38 | + |
| 39 | + model.add(df.Linear(100, 10)) |
| 40 | + model.add(df.SoftMax()) |
| 41 | + return model |
| 42 | + |
| 43 | + |
| 44 | +def lenet2(): |
| 45 | + model = df.Sequential() |
| 46 | + model.add(df.Reshape(-1, 1, 28, 28)) |
| 47 | + model.add(df.SpatialConvolution(1, 32, 5, 5, 1, 1, with_bias=False)) |
| 48 | + model.add(df.BatchNormalization(32)) |
| 49 | + model.add(df.ReLU()) |
| 50 | + model.add(df.SpatialMaxPooling(2, 2)) |
| 51 | + |
| 52 | + model.add(df.SpatialConvolution(32, 64, 5, 5, 1, 1, with_bias=False)) |
| 53 | + model.add(df.BatchNormalization(64)) |
| 54 | + model.add(df.ReLU()) |
| 55 | + model.add(df.SpatialMaxPooling(2, 2)) |
| 56 | + model.add(df.Reshape(-1, 4*4*64)) |
| 57 | + |
| 58 | + model.add(df.Linear(4*4*64, 100, with_bias=False)) |
| 59 | + model.add(df.BatchNormalization(100)) |
| 60 | + model.add(df.ReLU()) |
| 61 | + model.add(df.Dropout(0.5)) |
| 62 | + |
| 63 | + model.add(df.Linear(100, 10)) |
| 64 | + model.add(df.SoftMax()) |
| 65 | + return model |
0 commit comments