|
| 1 | +import DeepFried2 as df |
| 2 | + |
| 3 | + |
| 4 | +class Add(df.Module): |
| 5 | + def symb_forward(self, symb_inputs): |
| 6 | + assert isinstance(symb_inputs, (list, tuple)), "Input to `Add` must be multiple tensors." |
| 7 | + |
| 8 | + s = symb_inputs[0] |
| 9 | + for x in symb_inputs[1:]: |
| 10 | + s = s + x |
| 11 | + return s |
| 12 | + |
| 13 | + |
| 14 | +def block(nchan, fs=(3,3), body=None): |
| 15 | + return df.Sequential( |
| 16 | + df.Parallel( |
| 17 | + df.Sequential( |
| 18 | + df.BatchNormalization(nchan), df.ReLU(), |
| 19 | + df.SpatialConvolutionCUDNN(nchan, nchan, fs, border='same', init=df.init.prelu(), bias=False), |
| 20 | + df.BatchNormalization(nchan), df.ReLU(), |
| 21 | + df.SpatialConvolutionCUDNN(nchan, nchan, fs, border='same', init=df.init.prelu(), bias=False) |
| 22 | + ) if body is None else body, |
| 23 | + df.Identity() |
| 24 | + ), |
| 25 | + Add() |
| 26 | + ) |
| 27 | + |
| 28 | + |
| 29 | +def block_proj(nin, nout, fs=(3,3), body=None): |
| 30 | + return df.Sequential( |
| 31 | + df.Parallel( |
| 32 | + df.Sequential( |
| 33 | + df.BatchNormalization(nin), df.ReLU(), |
| 34 | + df.SpatialConvolutionCUDNN(nin, nout, fs, border='same', init=df.init.prelu(), bias=False), |
| 35 | + df.BatchNormalization(nout), df.ReLU(), |
| 36 | + df.SpatialConvolutionCUDNN(nout, nout, fs, border='same', init=df.init.prelu(), bias=False) |
| 37 | + ) if body is None else body, |
| 38 | + df.SpatialConvolutionCUDNN(nin, nout, (1,)*len(fs)), |
| 39 | + ), |
| 40 | + Add() |
| 41 | + ) |
0 commit comments