@@ -15,6 +15,10 @@ def splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None,
15
15
"""
16
16
Find the B-spline representation of an N-D curve.
17
17
18
+ .. legacy:: function
19
+
20
+ Specifically, we recommend using `make_splprep` in new code.
21
+
18
22
Given a list of N rank-1 arrays, `x`, which represent a curve in
19
23
N-dimensional space parametrized by `u`, find a smooth approximating
20
24
spline curve g(`u`). Uses the FORTRAN routine parcur from FITPACK.
@@ -162,6 +166,11 @@ def splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None,
162
166
"""
163
167
Find the B-spline representation of a 1-D curve.
164
168
169
+ .. legacy:: function
170
+
171
+ Specifically, we recommend using `make_splrep` in new code.
172
+
173
+
165
174
Given the set of data points ``(x[i], y[i])`` determine a smooth spline
166
175
approximation of degree k on the interval ``xb <= x <= xe``.
167
176
@@ -300,6 +309,11 @@ def splev(x, tck, der=0, ext=0):
300
309
"""
301
310
Evaluate a B-spline or its derivatives.
302
311
312
+ .. legacy:: function
313
+
314
+ Specifically, we recommend constructing a `BSpline` object and using
315
+ its ``__call__`` method.
316
+
303
317
Given the knots and coefficients of a B-spline representation, evaluate
304
318
the value of the smoothing polynomial and its derivatives. This is a
305
319
wrapper around the FORTRAN routines splev and splder of FITPACK.
@@ -385,6 +399,11 @@ def splint(a, b, tck, full_output=0):
385
399
"""
386
400
Evaluate the definite integral of a B-spline between two given points.
387
401
402
+ .. legacy:: function
403
+
404
+ Specifically, we recommend constructing a `BSpline` object and using its
405
+ ``integrate`` method.
406
+
388
407
Parameters
389
408
----------
390
409
a, b : float
@@ -450,6 +469,11 @@ def sproot(tck, mest=10):
450
469
"""
451
470
Find the roots of a cubic B-spline.
452
471
472
+ .. legacy:: function
473
+
474
+ Specifically, we recommend constructing a `BSpline` object and using the
475
+ following pattern: `PPoly.from_spline(spl).roots()`.
476
+
453
477
Given the knots (>=8) and coefficients of a cubic B-spline return the
454
478
roots of the spline.
455
479
@@ -541,6 +565,11 @@ def spalde(x, tck):
541
565
Evaluate a B-spline and all its derivatives at one point (or set of points) up
542
566
to order k (the degree of the spline), being 0 the spline itself.
543
567
568
+ .. legacy:: function
569
+
570
+ Specifically, we recommend constructing a `BSpline` object and evaluate
571
+ its derivative in a loop or a list comprehension.
572
+
544
573
Parameters
545
574
----------
546
575
x : array_like
@@ -633,6 +662,11 @@ def insert(x, tck, m=1, per=0):
633
662
"""
634
663
Insert knots into a B-spline.
635
664
665
+ .. legacy:: function
666
+
667
+ Specifically, we recommend constructing a `BSpline` object and using
668
+ its ``insert_knot`` method.
669
+
636
670
Given the knots and coefficients of a B-spline representation, create a
637
671
new B-spline with a knot inserted `m` times at point `x`.
638
672
This is a wrapper around the FORTRAN routine insert of FITPACK.
@@ -729,6 +763,11 @@ def splder(tck, n=1):
729
763
"""
730
764
Compute the spline representation of the derivative of a given spline
731
765
766
+ .. legacy:: function
767
+
768
+ Specifically, we recommend constructing a `BSpline` object and using its
769
+ ``derivative`` method.
770
+
732
771
Parameters
733
772
----------
734
773
tck : BSpline instance or tuple
@@ -791,6 +830,11 @@ def splantider(tck, n=1):
791
830
"""
792
831
Compute the spline for the antiderivative (integral) of a given spline.
793
832
833
+ .. legacy:: function
834
+
835
+ Specifically, we recommend constructing a `BSpline` object and using its
836
+ ``antiderivative`` method.
837
+
794
838
Parameters
795
839
----------
796
840
tck : BSpline instance or a tuple of (t, c, k)
0 commit comments