@@ -236,27 +236,27 @@ def cases_test_fit_mle():
236
236
'poisson_binom' } # vector-valued shape parameter
237
237
238
238
# Please keep this list in alphabetical order...
239
- slow_basic_fit = {'alpha' , 'betaprime' , 'binom' , 'bradford' , 'burr12' ,
239
+ slow_basic_fit = {'alpha' , 'arcsine' , ' betaprime' , 'binom' , 'bradford' , 'burr12' ,
240
240
'chi' , 'crystalball' , 'dweibull' , 'erlang' , 'exponnorm' ,
241
241
'exponpow' , 'f' , 'fatiguelife' , 'fisk' , 'foldcauchy' , 'gamma' ,
242
242
'genexpon' , 'genextreme' , 'gennorm' , 'genpareto' ,
243
243
'gompertz' , 'halfgennorm' , 'invgamma' , 'invgauss' , 'invweibull' ,
244
244
'jf_skew_t' , 'johnsonsb' , 'johnsonsu' , 'kappa3' ,
245
245
'kstwobign' , 'loglaplace' , 'lognorm' , 'lomax' , 'mielke' ,
246
- 'nakagami' , ' nbinom' , 'norminvgauss' ,
246
+ 'nbinom' , 'norminvgauss' ,
247
247
'pareto' , 'pearson3' , 'powerlaw' , 'powernorm' ,
248
248
'randint' , 'rdist' , 'recipinvgauss' , 'rice' , 'skewnorm' ,
249
249
't' , 'uniform' , 'weibull_max' , 'weibull_min' , 'wrapcauchy' }
250
250
251
251
# Please keep this list in alphabetical order...
252
- xslow_basic_fit = {'beta' , ' betabinom' , 'betanbinom' , 'burr' , 'exponweib' ,
252
+ xslow_basic_fit = {'betabinom' , 'betanbinom' , 'burr' , 'exponweib' ,
253
253
'gausshyper' , 'gengamma' , 'genhalflogistic' ,
254
254
'genhyperbolic' , 'geninvgauss' ,
255
255
'hypergeom' , 'kappa4' , 'loguniform' ,
256
256
'ncf' , 'nchypergeom_fisher' , 'nchypergeom_wallenius' ,
257
257
'nct' , 'ncx2' , 'nhypergeom' ,
258
258
'powerlognorm' , 'reciprocal' , 'rel_breitwigner' ,
259
- 'skellam' , 'trapezoid' , 'triang' , 'truncnorm' ,
259
+ 'skellam' , 'trapezoid' , 'triang' ,
260
260
'tukeylambda' , 'vonmises' , 'zipfian' }
261
261
262
262
for dist in dict (distdiscrete + distcont ):
@@ -288,7 +288,7 @@ def cases_test_fit_mse():
288
288
}
289
289
290
290
# Please keep this list in alphabetical order...
291
- slow_basic_fit = {'alpha' , 'anglit' , 'arcsine' , ' betabinom' , 'bradford' ,
291
+ slow_basic_fit = {'alpha' , 'anglit' , 'betabinom' , 'bradford' ,
292
292
'chi' , 'chi2' , 'crystalball' , 'dweibull' ,
293
293
'erlang' , 'exponnorm' , 'exponpow' , 'exponweib' ,
294
294
'fatiguelife' , 'fisk' , 'foldcauchy' , 'foldnorm' ,
@@ -312,7 +312,7 @@ def cases_test_fit_mse():
312
312
'johnsonsb' , 'kappa4' , 'loguniform' , 'mielke' ,
313
313
'nakagami' , 'ncf' , 'nchypergeom_fisher' ,
314
314
'nchypergeom_wallenius' , 'nct' , 'ncx2' ,
315
- 'pearson3' , 'powerlaw' , ' powerlognorm' ,
315
+ 'pearson3' , 'powerlognorm' ,
316
316
'rdist' , 'reciprocal' , 'rel_breitwigner' , 'rice' ,
317
317
'trapezoid' , 'truncnorm' , 'truncweibull_min' ,
318
318
'vonmises_line' , 'zipfian' }
@@ -537,6 +537,7 @@ def test_basic_fit_mle(self, dist_name):
537
537
def test_basic_fit_mse (self , dist_name ):
538
538
self .basic_fit_test (dist_name , "mse" , rng = 2 )
539
539
540
+ @pytest .mark .slow
540
541
def test_arcsine (self ):
541
542
# Can't guarantee that all distributions will fit all data with
542
543
# arbitrary bounds. This distribution just happens to fail above.
@@ -567,6 +568,7 @@ def test_argus(self, method):
567
568
assert_nlff_less_or_close (dist , data , res .params , shapes , ** self .tols ,
568
569
nlff_name = nlff_name )
569
570
571
+ @pytest .mark .xslow
570
572
def test_beta (self ):
571
573
# Can't guarantee that all distributions will fit all data with
572
574
# arbitrary bounds. This distribution just happens to fail above.
@@ -610,6 +612,7 @@ def test_nakagami(self):
610
612
assert_nlff_less_or_close (dist , data , res .params , shapes ,
611
613
nlff_name = 'nnlf' , ** self .tols )
612
614
615
+ @pytest .mark .slow
613
616
def test_powerlaw (self ):
614
617
# Can't guarantee that all distributions will fit all data with
615
618
# arbitrary bounds. This distribution just happens to fail above.
@@ -638,7 +641,7 @@ def test_truncpareto(self):
638
641
639
642
assert_nlff_less_or_close (dist , data , res .params , shapes , ** self .tols )
640
643
641
- @pytest .mark .fail_slow ( 5 )
644
+ @pytest .mark .slow
642
645
def test_truncweibull_min (self ):
643
646
# Can't guarantee that all distributions will fit all data with
644
647
# arbitrary bounds. This distribution just happens to fail above.
0 commit comments