|
1 | 1 | import click |
2 | 2 | from pathlib import Path |
3 | 3 |
|
| 4 | +import secrets |
| 5 | +import shutil |
4 | 6 | import gradio as gr |
| 7 | +from gradio_molecule3d import Molecule3D |
| 8 | +from Bio.PDB import PDBIO |
5 | 9 |
|
6 | | -from alphafold3_pytorch import ( |
7 | | - Alphafold3, |
8 | | - Alphafold3Input, |
9 | | - alphafold3_inputs_to_batched_atom_input |
10 | | -) |
| 10 | +from alphafold3_pytorch import Alphafold3, Alphafold3Input |
11 | 11 |
|
12 | 12 | # constants |
13 | | - |
14 | 13 | model = None |
| 14 | +cache_path = None |
| 15 | +pdb_writer = PDBIO() |
| 16 | + |
15 | 17 |
|
16 | | -# main fold functoin |
| 18 | +# main fold function |
| 19 | +def fold(entities, request: gr.Request): |
| 20 | + proteins = [] |
| 21 | + rnas = [] |
| 22 | + dnas = [] |
| 23 | + ligands = [] |
| 24 | + ions = [] |
| 25 | + for entity in entities: |
| 26 | + if entity["mol_type"] == "Protein": |
| 27 | + proteins.extend([entity["sequence"]] * entity["num_copies"]) |
| 28 | + elif entity["mol_type"] == "RNA": |
| 29 | + rnas.extend([entity["sequence"]] * entity["num_copies"]) |
| 30 | + elif entity["mol_type"] == "DNA": |
| 31 | + dnas.extend([entity["sequence"]] * entity["num_copies"]) |
| 32 | + elif entity["mol_type"] == "Ligand": |
| 33 | + ligands.extend([entity["sequence"]] * entity["num_copies"]) |
| 34 | + elif entity["mol_type"] == "Ion": |
| 35 | + ions.extend([entity["sequence"]] * entity["num_copies"]) |
17 | 36 |
|
18 | | -def fold(protein): |
| 37 | + # Prepare the input for the model |
19 | 38 | alphafold3_input = Alphafold3Input( |
20 | | - proteins = [protein] |
| 39 | + proteins=proteins, |
| 40 | + ss_dna=dnas, |
| 41 | + ss_rna=rnas, |
| 42 | + ligands=ligands, |
| 43 | + metal_ions=ions, |
21 | 44 | ) |
22 | 45 |
|
| 46 | + # Run the model inference in a separate thread |
23 | 47 | model.eval() |
24 | | - atom_pos, = model.forward_with_alphafold3_inputs(alphafold3_input) |
| 48 | + (structure,) = model.forward_with_alphafold3_inputs( |
| 49 | + alphafold3_inputs=alphafold3_input, |
| 50 | + return_bio_pdb_structures=True, |
| 51 | + ) |
| 52 | + |
| 53 | + global cache_path, pdb_writer |
| 54 | + output_path = cache_path / str(request.session_hash) / f"{secrets.token_urlsafe(8)}.pdb" |
| 55 | + output_path.parent.mkdir(exist_ok=True) |
| 56 | + |
| 57 | + pdb_writer.set_structure(structure) |
| 58 | + pdb_writer.save(str(output_path)) |
| 59 | + |
| 60 | + return str(output_path) |
25 | 61 |
|
26 | | - return str(atom_pos.tolist()) |
27 | 62 |
|
28 | 63 | # gradio |
| 64 | +def delete_cache(request: gr.Request): |
| 65 | + if not request.session_hash: |
| 66 | + return |
29 | 67 |
|
30 | | -gradio_app = gr.Interface( |
31 | | - fn = fold, |
32 | | - inputs = [ |
33 | | - "text" |
34 | | - ], |
35 | | - outputs = [ |
36 | | - "text" |
37 | | - ], |
38 | | -) |
| 68 | + user_dir: Path = cache_path / request.session_hash |
| 69 | + if user_dir.exists(): |
| 70 | + shutil.rmtree(str(user_dir)) |
39 | 71 |
|
40 | | -# cli |
41 | 72 |
|
| 73 | +with gr.Blocks(delete_cache=(600, 3600)) as gradio_app: |
| 74 | + entities = gr.State([]) |
| 75 | + |
| 76 | + with gr.Row(): |
| 77 | + gr.Markdown("### AlphaFold3 PyTorch Web UI") |
| 78 | + |
| 79 | + with gr.Row(): |
| 80 | + gr.Column(scale=8) |
| 81 | + # upload_json_button = gr.Button("Upload JSON", scale=1, min_width=100) |
| 82 | + clear_button = gr.Button("Clear", scale=1, min_width=100) |
| 83 | + |
| 84 | + with gr.Row(): |
| 85 | + with gr.Column(scale=1, min_width=150): |
| 86 | + mtype = gr.Dropdown( |
| 87 | + value="Protein", |
| 88 | + label="Molecule type", |
| 89 | + choices=["Protein", "DNA", "RNA", "Ligand", "Ion"], |
| 90 | + interactive=True, |
| 91 | + ) |
| 92 | + with gr.Column(scale=1, min_width=80): |
| 93 | + c = gr.Number( |
| 94 | + value=1, |
| 95 | + label="Copies", |
| 96 | + interactive=True, |
| 97 | + ) |
| 98 | + |
| 99 | + with gr.Column(scale=8, min_width=200): |
| 100 | + |
| 101 | + @gr.render(inputs=mtype) |
| 102 | + def render_sequence(mol_type): |
| 103 | + if mol_type in ["Protein", "DNA", "RNA"]: |
| 104 | + seq = gr.Textbox( |
| 105 | + label="Paste sequence or fasta", |
| 106 | + placeholder="Input", |
| 107 | + interactive=True, |
| 108 | + ) |
| 109 | + elif mol_type == "Ligand": |
| 110 | + seq = gr.Dropdown( |
| 111 | + label="Select ligand", |
| 112 | + choices=[ |
| 113 | + "ADP - Adenosine disphosphate", |
| 114 | + "ATP - Adenosine triphosphate", |
| 115 | + "AMP - Adenosine monophosphate", |
| 116 | + "GTP - Guanosine-5'-triphosphate", |
| 117 | + "GDP - Guanosine-5'-diphosphate", |
| 118 | + "FAD - Flavin adenine dinucleotide", |
| 119 | + "NAD - Nicotinamide-adenine-dinucleotide", |
| 120 | + "NAP - Nicotinamide-adenine-dinucleotide phosphate (NADP)", |
| 121 | + "NDP - Dihydro-nicotinamide-adenine-dinucleotide-phosphate (NADPH)", |
| 122 | + "HEM - Heme", |
| 123 | + "HEC - Heme C", |
| 124 | + "OLA - Oleic acid", |
| 125 | + "MYR - Myristic acid", |
| 126 | + "CIT - Citric acid", |
| 127 | + "CLA - Chlorophyll A", |
| 128 | + "CHL - Chlorophyll B", |
| 129 | + "BCL - Bacteriochlorophyll A", |
| 130 | + "BCB - Bacteriochlorophyll B", |
| 131 | + ], |
| 132 | + interactive=True, |
| 133 | + ) |
| 134 | + elif mol_type == "Ion": |
| 135 | + seq = gr.Dropdown( |
| 136 | + label="Select ion", |
| 137 | + choices=[ |
| 138 | + "Mg²⁺", |
| 139 | + "Zn²⁺", |
| 140 | + "Cl⁻", |
| 141 | + "Ca²⁺", |
| 142 | + "Na⁺", |
| 143 | + "Mn²⁺", |
| 144 | + "K⁺", |
| 145 | + "Fe³⁺", |
| 146 | + "Cu²⁺", |
| 147 | + "Co²⁺", |
| 148 | + ], |
| 149 | + interactive=True, |
| 150 | + ) |
| 151 | + |
| 152 | + add_button.click(add_entity, inputs=[entities, mtype, c, seq], outputs=[entities]) |
| 153 | + clear_button.click(lambda: ("Protein", 1, None), None, outputs=[mtype, c, seq]) |
| 154 | + |
| 155 | + add_button = gr.Button("Add entity", scale=1, min_width=100) |
| 156 | + |
| 157 | + def add_entity(entities, mtype="Protein", c=1, seq=""): |
| 158 | + if seq is None or len(seq) == 0: |
| 159 | + gr.Info("Input required") |
| 160 | + return entities |
| 161 | + |
| 162 | + seq_norm = seq.strip(" \t\n\r").upper() |
| 163 | + |
| 164 | + if mtype in ["Protein", "DNA", "RNA"]: |
| 165 | + if mtype == "Protein" and any([x not in "ARDCQEGHILKMNFPSTWYV" for x in seq_norm]): |
| 166 | + gr.Info("Invalid protein sequence. Allowed characters: A, R, D, C, Q, E, G, H, I, L, K, M, N, F, P, S, T, W, Y, V") |
| 167 | + return entities |
| 168 | + |
| 169 | + if mtype == "DNA" and any([x not in "ACGT" for x in seq_norm]): |
| 170 | + gr.Info("Invalid DNA sequence. Allowed characters: A, C, G, T") |
| 171 | + return entities |
| 172 | + |
| 173 | + if mtype == "RNA" and any([x not in "ACGU" for x in seq_norm]): |
| 174 | + gr.Info("Invalid RNA sequence. Allowed characters: A, C, G, U") |
| 175 | + return entities |
| 176 | + |
| 177 | + if len(seq) < 4: |
| 178 | + gr.Info("Minimum 4 characters required") |
| 179 | + return entities |
| 180 | + |
| 181 | + elif mtype == "Ligand": |
| 182 | + if seq is None or len(seq) == 0: |
| 183 | + gr.Info("Select a ligand") |
| 184 | + return entities |
| 185 | + seq_norm = seq.split(" - ")[0] |
| 186 | + elif mtype == "Ion": |
| 187 | + if seq is None or len(seq) == 0: |
| 188 | + gr.Info("Select an ion") |
| 189 | + return entities |
| 190 | + seq_norm = "".join([x for x in seq if x.isalpha()]) |
| 191 | + |
| 192 | + new_entity = {"mol_type": mtype, "num_copies": c, "sequence": seq_norm} |
| 193 | + |
| 194 | + return entities + [new_entity] |
| 195 | + |
| 196 | + @gr.render(inputs=entities) |
| 197 | + def render_entities(entity_list): |
| 198 | + for idx, entity in enumerate(entity_list): |
| 199 | + with gr.Row(): |
| 200 | + gr.Text( |
| 201 | + value=entity["mol_type"], |
| 202 | + label="Type", |
| 203 | + scale=1, |
| 204 | + min_width=90, |
| 205 | + interactive=False, |
| 206 | + ) |
| 207 | + gr.Text( |
| 208 | + value=entity["num_copies"], |
| 209 | + label="Copies", |
| 210 | + scale=1, |
| 211 | + min_width=80, |
| 212 | + interactive=False, |
| 213 | + ) |
| 214 | + |
| 215 | + sequence = entity["sequence"] |
| 216 | + if entity["mol_type"] not in ["Ligand", "Ion"]: |
| 217 | + # Split every 10 characters, and add a \t after each split |
| 218 | + sequence = "\t".join([sequence[i : i + 10] for i in range(0, len(sequence), 10)]) |
| 219 | + |
| 220 | + gr.Text( |
| 221 | + value=sequence, |
| 222 | + label="Sequence", |
| 223 | + placeholder="Input", |
| 224 | + scale=7, |
| 225 | + min_width=200, |
| 226 | + interactive=False, |
| 227 | + ) |
| 228 | + |
| 229 | + del_button = gr.Button("🗑️", scale=0, min_width=50) |
| 230 | + |
| 231 | + def delete(entity_id=idx): |
| 232 | + entity_list.pop(entity_id) |
| 233 | + return entity_list |
| 234 | + |
| 235 | + del_button.click(delete, None, outputs=[entities]) |
| 236 | + |
| 237 | + pred_button = gr.Button("Predict", scale=1, min_width=100) |
| 238 | + output_mol = Molecule3D(label="Output structure", config={"backgroundColor": "black"}) |
| 239 | + |
| 240 | + pred_button.click(fold, inputs=entities, outputs=output_mol) |
| 241 | + clear_button.click(lambda: ([], None), None, outputs=[entities, output_mol]) |
| 242 | + |
| 243 | + gradio_app.unload(delete_cache) |
| 244 | + |
| 245 | + |
| 246 | +# cli |
42 | 247 | @click.command() |
43 | | -@click.option('-ckpt', '--checkpoint', type = str, help = 'path to alphafold3 checkpoint', required = True) |
44 | | -def app(checkpoint: str): |
| 248 | +@click.option("-ckpt", "--checkpoint", type=str, help="path to alphafold3 checkpoint", required=True) |
| 249 | +@click.option("-cache", "--cache-dir", type=str, help="path to output cache", required=False, default="cache") |
| 250 | +@click.option("-prec", "--precision", type=str, help="precision to use", required=False, default="float32") |
| 251 | +def app(checkpoint: str, cache_dir: str, precision: str): |
45 | 252 | path = Path(checkpoint) |
46 | | - assert path.exists(), 'checkpoint does not exist at path' |
| 253 | + assert path.exists(), "checkpoint does not exist at path" |
| 254 | + |
| 255 | + global cache_path |
| 256 | + cache_path = Path(cache_dir) |
| 257 | + |
| 258 | + if cache_path.exists(): |
| 259 | + shutil.rmtree(str(cache_path)) |
| 260 | + |
| 261 | + cache_path.mkdir(exist_ok=True) |
47 | 262 |
|
48 | 263 | global model |
49 | 264 | model = Alphafold3.init_and_load(str(path)) |
| 265 | + # To device and quantize? |
| 266 | + # device = "cuda" if torch.cuda.is_available() else "cpu" |
| 267 | + # try: |
| 268 | + # dtype = getattr(torch, precision) |
| 269 | + # except AttributeError: |
| 270 | + # print(f"Invalid precision: {precision}. Using float32") |
| 271 | + # dtype = torch.float32 |
| 272 | + # model.to(device, dtype=dtype) |
50 | 273 |
|
51 | 274 | gradio_app.launch() |
0 commit comments