Skip to content

Commit ec0a1c7

Browse files
committed
address #329
1 parent b281d55 commit ec0a1c7

File tree

6 files changed

+11
-11
lines changed

6 files changed

+11
-11
lines changed

denoising_diffusion_pytorch/classifier_free_guidance.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -349,8 +349,8 @@ def __init__(
349349
default_out_dim = channels * (1 if not learned_variance else 2)
350350
self.out_dim = default(out_dim, default_out_dim)
351351

352-
self.final_res_block = ResnetBlock(dim * 2, dim, time_emb_dim = time_dim, classes_emb_dim = classes_dim)
353-
self.final_conv = nn.Conv2d(dim, self.out_dim, 1)
352+
self.final_res_block = ResnetBlock(init_dim * 2, init_dim, time_emb_dim = time_dim, classes_emb_dim = classes_dim)
353+
self.final_conv = nn.Conv2d(init_dim, self.out_dim, 1)
354354

355355
def forward_with_cond_scale(
356356
self,

denoising_diffusion_pytorch/denoising_diffusion_pytorch.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -380,8 +380,8 @@ def __init__(
380380
default_out_dim = channels * (1 if not learned_variance else 2)
381381
self.out_dim = default(out_dim, default_out_dim)
382382

383-
self.final_res_block = resnet_block(dim * 2, dim)
384-
self.final_conv = nn.Conv2d(dim, self.out_dim, 1)
383+
self.final_res_block = resnet_block(init_dim * 2, init_dim)
384+
self.final_conv = nn.Conv2d(init_dim, self.out_dim, 1)
385385

386386
@property
387387
def downsample_factor(self):

denoising_diffusion_pytorch/denoising_diffusion_pytorch_1d.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -343,8 +343,8 @@ def __init__(
343343
default_out_dim = channels * (1 if not learned_variance else 2)
344344
self.out_dim = default(out_dim, default_out_dim)
345345

346-
self.final_res_block = resnet_block(dim * 2, dim)
347-
self.final_conv = nn.Conv1d(dim, self.out_dim, 1)
346+
self.final_res_block = resnet_block(init_dim * 2, init_dim)
347+
self.final_conv = nn.Conv1d(init_dim, self.out_dim, 1)
348348

349349
def forward(self, x, time, x_self_cond = None):
350350
if self.self_condition:

denoising_diffusion_pytorch/repaint.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -376,8 +376,8 @@ def __init__(
376376
default_out_dim = channels * (1 if not learned_variance else 2)
377377
self.out_dim = default(out_dim, default_out_dim)
378378

379-
self.final_res_block = ResnetBlock(dim * 2, dim, time_emb_dim = time_dim)
380-
self.final_conv = nn.Conv2d(dim, self.out_dim, 1)
379+
self.final_res_block = ResnetBlock(init_dim * 2, init_dim, time_emb_dim = time_dim)
380+
self.final_conv = nn.Conv2d(init_dim, self.out_dim, 1)
381381

382382
@property
383383
def downsample_factor(self):

denoising_diffusion_pytorch/simple_diffusion.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -428,8 +428,8 @@ def __init__(
428428
default_out_dim = input_channels
429429
self.out_dim = default(out_dim, default_out_dim)
430430

431-
self.final_res_block = ResnetBlock(dim * 2, dim, time_emb_dim = time_dim)
432-
self.final_conv = nn.Conv2d(dim, self.out_dim, 1)
431+
self.final_res_block = ResnetBlock(init_dim * 2, init_dim, time_emb_dim = time_dim)
432+
self.final_conv = nn.Conv2d(init_dim, self.out_dim, 1)
433433

434434
def forward(self, x, time):
435435
x = self.init_img_transform(x)
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
__version__ = '2.0.10'
1+
__version__ = '2.0.12'

0 commit comments

Comments
 (0)