|
| 1 | +import math |
| 2 | +import gzip |
| 3 | +import random |
| 4 | +from tqdm import tqdm |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +import torch |
| 8 | +from torch.optim import Adam |
| 9 | +from torch import Tensor |
| 10 | +from torch.utils.data import DataLoader, Dataset |
| 11 | + |
| 12 | +from native_sparse_attention_pytorch.transformer import Transformer |
| 13 | + |
| 14 | +from native_sparse_attention_pytorch.compress_networks import ( |
| 15 | + ConvLinearCompress, |
| 16 | + AttentionPool, |
| 17 | + GroupedMLP |
| 18 | +) |
| 19 | + |
| 20 | +# constants |
| 21 | + |
| 22 | +NUM_BATCHES = int(1e5) |
| 23 | +BATCH_SIZE = 4 |
| 24 | +GRAD_ACCUM_EVERY = 4 |
| 25 | +LEARNING_RATE = 1e-4 |
| 26 | +VALIDATE_EVERY = 100 |
| 27 | +PRIME_LENGTH = 64 |
| 28 | +SHOULD_GENERATE = False |
| 29 | +GENERATE_EVERY = 500 |
| 30 | +GENERATE_LENGTH = 512 |
| 31 | +SEQ_LEN = 512 |
| 32 | +HEADS = 8 |
| 33 | +KV_HEADS = 8 |
| 34 | + |
| 35 | +USE_SPARSE_ATTN = True |
| 36 | +USE_TRITON_NSA = True |
| 37 | +USE_FLEX_FOR_FINE_SELECTION = False # will push flex a bit, won't be efficient as each layer needs sparsity dynmically generated, but may be enough just to compare to full attention before going all-in on triton kernels |
| 38 | +QUERY_HEADS_SHARE_SELECTION = False # if set to False, each query head can look at a different segment of their corresponding key / value head in GQA |
| 39 | + |
| 40 | +# sparse attention related |
| 41 | + |
| 42 | +SLIDING_WINDOW_SIZE = 32 |
| 43 | +COMPRESS_BLOCK_SIZE = 16 |
| 44 | + |
| 45 | +FINE_BLOCK_SIZE = 16 |
| 46 | +NUM_FINE_SELECTED = 1 |
| 47 | + |
| 48 | +INTERPOLATED_IMPORTANCE_SCORE = False |
| 49 | +USE_DIFF_TOPK = True |
| 50 | + |
| 51 | +# experiment related |
| 52 | + |
| 53 | +PROJECT_NAME = 'native-sparse-attention' |
| 54 | +RUN_NAME = 'baseline' if not USE_SPARSE_ATTN else f'sparse-attn: compress size {COMPRESS_BLOCK_SIZE} | fine size {FINE_BLOCK_SIZE} | {NUM_FINE_SELECTED} selected' |
| 55 | +WANDB_ONLINE = False # turn this on to pipe experiment to cloud |
| 56 | + |
| 57 | +# helpers |
| 58 | + |
| 59 | +def exists(v): |
| 60 | + return v is not None |
| 61 | + |
| 62 | +def cycle(loader): |
| 63 | + while True: |
| 64 | + for data in loader: |
| 65 | + yield data |
| 66 | + |
| 67 | +def decode_token(token): |
| 68 | + return str(chr(max(32, token))) |
| 69 | + |
| 70 | +def decode_tokens(tokens): |
| 71 | + return "".join(list(map(decode_token, tokens))) |
| 72 | + |
| 73 | +# sampling helpers |
| 74 | + |
| 75 | +def log(t, eps = 1e-20): |
| 76 | + return torch.log(t.clamp(min = eps)) |
| 77 | + |
| 78 | +def gumbel_noise(t): |
| 79 | + noise = torch.zeros_like(t).uniform_(0, 1) |
| 80 | + return -log(-log(noise)) |
| 81 | + |
| 82 | +def gumbel_sample(t, temperature = 1., dim = -1, keepdim = True): |
| 83 | + return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim = dim, keepdim = keepdim) |
| 84 | + |
| 85 | +def top_k(logits, thres = 0.9): |
| 86 | + k = math.ceil((1 - thres) * logits.shape[-1]) |
| 87 | + val, ind = torch.topk(logits, k) |
| 88 | + probs = torch.full_like(logits, float('-inf')) |
| 89 | + probs.scatter_(-1, ind, val) |
| 90 | + return probs |
| 91 | + |
| 92 | +def base_decoding( |
| 93 | + net, |
| 94 | + prompt: Tensor, |
| 95 | + seq_len: int, |
| 96 | + temperature = 1., |
| 97 | + filter_thres = 0.9, |
| 98 | +): |
| 99 | + prompt_seq_len, out = prompt.shape[-1], prompt.clone() |
| 100 | + sample_num_times = max(0, seq_len - prompt_seq_len) |
| 101 | + |
| 102 | + for _ in tqdm(range(sample_num_times)): |
| 103 | + logits = net(out, disable_flex = True) |
| 104 | + |
| 105 | + logits = logits[:, -1] |
| 106 | + logits = top_k(logits, thres = filter_thres) |
| 107 | + sample = gumbel_sample(logits, temperature = temperature, dim = -1) |
| 108 | + |
| 109 | + out = torch.cat((out, sample), dim = -1) |
| 110 | + |
| 111 | + return out[..., prompt_seq_len:] |
| 112 | + |
| 113 | +# model |
| 114 | + |
| 115 | +model = Transformer( |
| 116 | + num_tokens = 256, |
| 117 | + dim = 512, |
| 118 | + depth = 6, |
| 119 | + heads = HEADS, |
| 120 | + dim_head = 64, |
| 121 | + kv_heads = KV_HEADS, |
| 122 | + use_sparse_attn = USE_SPARSE_ATTN, |
| 123 | + use_flex_sliding_window = True, |
| 124 | + use_triton_fine_selection = USE_TRITON_NSA, |
| 125 | + use_flex_fine_selection = USE_FLEX_FOR_FINE_SELECTION, |
| 126 | + sparse_attn_kwargs = dict( |
| 127 | + sliding_window_size = SLIDING_WINDOW_SIZE, |
| 128 | + compress_block_size = COMPRESS_BLOCK_SIZE, |
| 129 | + compress_mlp = GroupedMLP( |
| 130 | + dim_head = 64, |
| 131 | + compress_block_size = COMPRESS_BLOCK_SIZE, |
| 132 | + heads = KV_HEADS, |
| 133 | + ), |
| 134 | + selection_block_size = FINE_BLOCK_SIZE, |
| 135 | + num_selected_blocks = NUM_FINE_SELECTED, |
| 136 | + use_diff_topk = USE_DIFF_TOPK, |
| 137 | + interpolated_importance_score = INTERPOLATED_IMPORTANCE_SCORE, |
| 138 | + query_heads_share_selected_kv = QUERY_HEADS_SHARE_SELECTION |
| 139 | + ) |
| 140 | +).cuda() |
| 141 | + |
| 142 | +# prepare enwik8 data |
| 143 | + |
| 144 | +with gzip.open('./data/enwik8.gz') as file: |
| 145 | + data = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy() |
| 146 | + np_train, np_valid = np.split(data, [int(90e6)]) |
| 147 | + data_train, data_val = torch.from_numpy(np_train), torch.from_numpy(np_valid) |
| 148 | + |
| 149 | +class TextSamplerDataset(Dataset): |
| 150 | + def __init__(self, data, seq_len): |
| 151 | + super().__init__() |
| 152 | + self.data = data |
| 153 | + self.seq_len = seq_len |
| 154 | + |
| 155 | + def __len__(self): |
| 156 | + return self.data.size(0) // self.seq_len |
| 157 | + |
| 158 | + def __getitem__(self, index): |
| 159 | + rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) |
| 160 | + full_seq = self.data[rand_start : rand_start + self.seq_len + 1].long() |
| 161 | + return full_seq.cuda() |
| 162 | + |
| 163 | +train_dataset = TextSamplerDataset(data_train, SEQ_LEN) |
| 164 | +val_dataset = TextSamplerDataset(data_val, SEQ_LEN) |
| 165 | +train_loader = DataLoader(train_dataset, batch_size = BATCH_SIZE) |
| 166 | +val_loader = DataLoader(val_dataset, batch_size = BATCH_SIZE) |
| 167 | + |
| 168 | +# optimizer |
| 169 | + |
| 170 | +optim = Adam(model.parameters(), lr = LEARNING_RATE) |
| 171 | + |
| 172 | +train_loader = cycle(train_loader) |
| 173 | +val_loader = cycle(val_loader) |
| 174 | + |
| 175 | +# wandb experiment tracker |
| 176 | + |
| 177 | +import wandb |
| 178 | +wandb.init(project = PROJECT_NAME, mode = 'disabled' if not WANDB_ONLINE else 'online') |
| 179 | +wandb.run.name = RUN_NAME |
| 180 | +wandb.run.save() |
| 181 | + |
| 182 | +# training |
| 183 | + |
| 184 | +for i in tqdm(range(NUM_BATCHES), mininterval = 10.0, desc = "training"): |
| 185 | + model.train() |
| 186 | + |
| 187 | + for _ in range(GRAD_ACCUM_EVERY): |
| 188 | + data = next(train_loader) |
| 189 | + |
| 190 | + loss = model(data, return_loss = True) |
| 191 | + |
| 192 | + (loss / GRAD_ACCUM_EVERY).backward() |
| 193 | + |
| 194 | + wandb.log(dict(loss = loss.item()), step = i) |
| 195 | + print(f"training loss: {loss.item():.3f}") |
| 196 | + |
| 197 | + torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) |
| 198 | + |
| 199 | + optim.step() |
| 200 | + optim.zero_grad() |
| 201 | + |
| 202 | + if i % VALIDATE_EVERY == 0: |
| 203 | + model.eval() |
| 204 | + with torch.no_grad(): |
| 205 | + valid_data = next(val_loader) |
| 206 | + |
| 207 | + loss = model(valid_data, return_loss = True) |
| 208 | + wandb.log(dict(valid_loss = loss.item()), step = i) |
| 209 | + print(f"validation loss: {loss.item():.3f}") |
| 210 | + |
| 211 | + if SHOULD_GENERATE and i % GENERATE_EVERY == 0: |
| 212 | + model.eval() |
| 213 | + |
| 214 | + inp = random.choice(val_dataset)[:PRIME_LENGTH] |
| 215 | + inp = inp.cuda() |
| 216 | + |
| 217 | + prime = decode_tokens(inp) |
| 218 | + print(f"\n{prime}\n") |
| 219 | + |
| 220 | + prompt = inp[None, ...] |
| 221 | + |
| 222 | + sampled = base_decoding(model, prompt, GENERATE_LENGTH) |
| 223 | + |
| 224 | + base_decode_output = decode_tokens(sampled[0]) |
| 225 | + |
| 226 | + print(f"\n{base_decode_output}\n") |
0 commit comments