|
483 | 483 | { |
484 | 484 | "name": "aten::_embedding_bag.out(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!))" |
485 | 485 | }, |
| 486 | + { |
| 487 | + "name": "aten::_fake_quantize_learnable_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.) -> Tensor" |
| 488 | + }, |
| 489 | + { |
| 490 | + "name": "aten::_fake_quantize_learnable_per_channel_affine.out(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1., *, Tensor(a!) out) -> Tensor(a!)" |
| 491 | + }, |
486 | 492 | { |
487 | 493 | "name": "aten::_fake_quantize_learnable_per_tensor_affine(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max, float grad_factor=1.) -> Tensor", |
488 | 494 | "category": "Quantization" |
|
501 | 507 | { |
502 | 508 | "name": "aten::_fft_r2c.out(Tensor self, int[] dim, int normalization, bool onesided, *, Tensor(a!) out) -> Tensor(a!)" |
503 | 509 | }, |
| 510 | + { |
| 511 | + "name": "aten::_get_cpu_capability() -> str" |
| 512 | + }, |
504 | 513 | { |
505 | 514 | "name": "aten::_has_compatible_shallow_copy_type(Tensor self, Tensor from) -> bool" |
506 | 515 | }, |
|
577 | 586 | { |
578 | 587 | "name": "aten::_prelu_kernel(Tensor self, Tensor weight) -> Tensor" |
579 | 588 | }, |
| 589 | + { |
| 590 | + "name": "aten::_safe_softmax(Tensor self, int dim, ScalarType? dtype=None) -> Tensor", |
| 591 | + "category": "Activation" |
| 592 | + }, |
580 | 593 | { |
581 | 594 | "name": "aten::_scaled_dot_product_efficient_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0., bool is_causal=False, *, float? scale=None) -> (Tensor output, Tensor log_sumexp, Tensor philox_seed, Tensor philox_offset)" |
582 | 595 | }, |
|
657 | 670 | { |
658 | 671 | "name": "aten::_transformer_encoder_layer_fwd.out(Tensor src, int embed_dim, int num_heads, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, bool use_gelu, bool norm_first, float eps, Tensor norm_weight_1, Tensor norm_bias_1, Tensor norm_weight_2, Tensor norm_bias_2, Tensor ffn_weight_1, Tensor ffn_bias_1, Tensor ffn_weight_2, Tensor ffn_bias_2, Tensor? mask=None, int? mask_type=None, *, Tensor(a!) out) -> Tensor(a!)" |
659 | 672 | }, |
| 673 | + { |
| 674 | + "name": "aten::_unique(Tensor self, bool sorted=True, bool return_inverse=False) -> (Tensor, Tensor)" |
| 675 | + }, |
| 676 | + { |
| 677 | + "name": "aten::_unique.out(Tensor self, bool sorted=True, bool return_inverse=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))" |
| 678 | + }, |
660 | 679 | { |
661 | 680 | "name": "aten::_unique2(Tensor self, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)" |
662 | 681 | }, |
|
2771 | 2790 | "name": "aten::format(str self, ...) -> str", |
2772 | 2791 | "is_vararg": true |
2773 | 2792 | }, |
| 2793 | + { |
| 2794 | + "name": "aten::frexp.Tensor(Tensor self) -> (Tensor mantissa, Tensor exponent)" |
| 2795 | + }, |
| 2796 | + { |
| 2797 | + "name": "aten::frexp.Tensor_out(Tensor self, *, Tensor(a!) mantissa, Tensor(b!) exponent) -> (Tensor(a!) mantissa, Tensor(b!) exponent)" |
| 2798 | + }, |
| 2799 | + { |
| 2800 | + "name": "aten::frexp(float a) -> (float, int)" |
| 2801 | + }, |
2774 | 2802 | { |
2775 | 2803 | "name": "aten::frobenius_norm.dim(Tensor self, int[1] dim, bool keepdim=False) -> Tensor", |
2776 | 2804 | "category": "Normalization" |
|
2968 | 2996 | { |
2969 | 2997 | "name": "aten::greater.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)" |
2970 | 2998 | }, |
| 2999 | + { |
| 3000 | + "name": "aten::greater(Tensor self, Tensor other) -> Tensor" |
| 3001 | + }, |
2971 | 3002 | { |
2972 | 3003 | "name": "aten::greater_equal.Tensor(Tensor self, Tensor other) -> Tensor" |
2973 | 3004 | }, |
|
5151 | 5182 | { |
5152 | 5183 | "name": "aten::range.out_(Scalar start, Scalar end, *, Tensor(a!) out) -> Tensor(a!)" |
5153 | 5184 | }, |
| 5185 | + { |
| 5186 | + "name": "aten::ravel(Tensor(a) self) -> Tensor(a)" |
| 5187 | + }, |
5154 | 5188 | { |
5155 | 5189 | "name": "aten::real(Tensor(a) self) -> Tensor(a)" |
5156 | 5190 | }, |
|
6794 | 6828 | { |
6795 | 6829 | "name": "cortex_m::transpose.out(Tensor input, int[] perm, *, Tensor(a!) out) -> Tensor(a!)" |
6796 | 6830 | }, |
| 6831 | + { |
| 6832 | + "name": "cuda::_current_device() -> int" |
| 6833 | + }, |
6797 | 6834 | { |
6798 | 6835 | "name": "detectron2::nms_rotated(Tensor boxes, Tensor scores, float iou_threshold) -> Tensor" |
6799 | 6836 | }, |
|
6971 | 7008 | { |
6972 | 7009 | "name": "fbgemm::rope_qkv_varseq_prefill(Tensor XQ, Tensor XK, Tensor XV, Tensor(a!) cache_K, Tensor(b!) cache_V, Tensor varseq_batch, Tensor varseq_seqpos, float theta, int? num_groups=1, Tensor? block_tables=None, int page_size=64, Tensor? varseq_cache_seqpos=None, int cache_logical_dtype_int=0, bool rope_scaling=False, int old_context_len=8192, float scaling_factor=16., float lo_freq_factor=1., float hi_freq_factor=32., Tensor? qparam_k=None, Tensor? qparam_v=None) -> Tensor" |
6973 | 7010 | }, |
| 7011 | + { |
| 7012 | + "name": "fbgemm::segment_sum_csr(SymInt batch_size, Tensor csr_seg, Tensor values) -> Tensor" |
| 7013 | + }, |
6974 | 7014 | { |
6975 | 7015 | "name": "fbgemm::silu_mul_quantize_i8(Tensor X1, Tensor X2, float scale) -> Tensor" |
6976 | 7016 | }, |
|
7742 | 7782 | { |
7743 | 7783 | "name": "prims::collapse(Tensor a, int start, int end) -> Tensor" |
7744 | 7784 | }, |
| 7785 | + { |
| 7786 | + "name": "profiler::_record_function_enter(str name, str? args=None) -> Tensor" |
| 7787 | + }, |
7745 | 7788 | { |
7746 | 7789 | "name": "profiler::_record_function_enter_new(str name, str? args=None) -> __torch__.torch.classes.profiler._RecordFunction" |
7747 | 7790 | }, |
|
8256 | 8299 | { |
8257 | 8300 | "name": "quantized_decomposed::quantize_per_token(Tensor input, Tensor scales, Tensor zero_points, int quant_min, int quant_max, ScalarType dtype) -> Tensor" |
8258 | 8301 | }, |
| 8302 | + { |
| 8303 | + "name": "sgl_kernel::extend_attention_cpu(Tensor q_extend, Tensor k_extend, Tensor v_extend, Tensor(a!) o_extend, Tensor k_buffer, Tensor v_buffer, Tensor req_to_token, Tensor req_pool_indices, Tensor seq_lens, Tensor extend_seq_lens, Tensor extend_start_loc, int max_len_extend, float sm_scale, float logit_cap) -> ()" |
| 8304 | + }, |
8259 | 8305 | { |
8260 | 8306 | "name": "tensorrt::execute_engine(Tensor[] inputs, __torch__.torch.classes.tensorrt.Engine engine) -> Tensor[]" |
8261 | 8307 | }, |
|
8379 | 8425 | { |
8380 | 8426 | "name": "torchao::quantize_affine(Tensor input, SymInt[] block_size, Tensor scale, Tensor? zero_point, ScalarType output_dtype, Scalar? quant_min=None, Scalar? quant_max=None) -> Tensor" |
8381 | 8427 | }, |
| 8428 | + { |
| 8429 | + "name": "torchaudio::forced_align(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank) -> (Tensor, Tensor)" |
| 8430 | + }, |
8382 | 8431 | { |
8383 | 8432 | "name": "torchaudio::sox_effects_apply_effects_tensor(Tensor tensor, int sample_rate, str[][] effects, bool channels_first=True) -> (Tensor, int)" |
8384 | 8433 | }, |
|
0 commit comments