@@ -303,20 +303,20 @@ def forward(self, feats):
303303 # broadcasting and fusion
304304 inner_outs = [proj_feats [- 1 ]]
305305 for idx in range (len (self .in_channels ) - 1 , 0 , - 1 ):
306- feat_heigh = inner_outs [0 ]
306+ feat_high = inner_outs [0 ]
307307 feat_low = proj_feats [idx - 1 ]
308- feat_heigh = self .lateral_convs [len (self .in_channels ) - 1 - idx ](feat_heigh )
309- inner_outs [0 ] = feat_heigh
310- upsample_feat = F .interpolate (feat_heigh , scale_factor = 2. , mode = 'nearest' )
308+ feat_high = self .lateral_convs [len (self .in_channels ) - 1 - idx ](feat_high )
309+ inner_outs [0 ] = feat_high
310+ upsample_feat = F .interpolate (feat_high , scale_factor = 2. , mode = 'nearest' )
311311 inner_out = self .fpn_blocks [len (self .in_channels )- 1 - idx ](torch .concat ([upsample_feat , feat_low ], dim = 1 ))
312312 inner_outs .insert (0 , inner_out )
313313
314314 outs = [inner_outs [0 ]]
315315 for idx in range (len (self .in_channels ) - 1 ):
316316 feat_low = outs [- 1 ]
317- feat_height = inner_outs [idx + 1 ]
317+ feat_high = inner_outs [idx + 1 ]
318318 downsample_feat = self .downsample_convs [idx ](feat_low )
319- out = self .pan_blocks [idx ](torch .concat ([downsample_feat , feat_height ], dim = 1 ))
319+ out = self .pan_blocks [idx ](torch .concat ([downsample_feat , feat_high ], dim = 1 ))
320320 outs .append (out )
321321
322322 return outs
0 commit comments