Skip to content

Commit 4fc692d

Browse files
committed
docs(notes): add 2025-06-05-dl-study-map-en.md
1 parent 99e4cb9 commit 4fc692d

File tree

1 file changed

+254
-0
lines changed

1 file changed

+254
-0
lines changed

notes/2025-06-05-dl-study-map-en.md

Lines changed: 254 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,254 @@
1+
---
2+
title: Study Map for Machine Learning, Deep Learning, and GPT
3+
lang: en
4+
layout: post
5+
audio: false
6+
translated: false
7+
generated: true
8+
---
9+
10+
Below is a comprehensive study map for **Machine Learning (ML)**, **Deep Learning (DL)**, and **Generative Pre-trained Transformers (GPT)**, designed to guide learners from beginner to advanced levels. This map organizes key concepts, tools, and milestones, building on the provided timeline of breakthroughs from 2010 to 2024. It includes structured learning paths, resources, and practical applications, ensuring a thorough understanding of these fields.
11+
12+
---
13+
14+
## Study Map for Machine Learning, Deep Learning, and GPT
15+
16+
### 1. Foundational Concepts (Beginner Level)
17+
**Objective**: Build a strong theoretical and practical foundation in ML, DL, and the context of GPT models.
18+
19+
#### Machine Learning Basics
20+
- **Topics**:
21+
- **Definition**: ML as a subset of AI, enabling systems to learn from data without explicit programming.
22+
- **Types of ML**:
23+
- Supervised Learning (e.g., regression, classification)
24+
- Unsupervised Learning (e.g., clustering, dimensionality reduction)
25+
- Reinforcement Learning (e.g., Q-learning, policy gradients)
26+
- **Key Algorithms**:
27+
- Linear Regression, Logistic Regression
28+
- Decision Trees, Random Forests
29+
- K-Means Clustering, PCA
30+
- Support Vector Machines (SVM)
31+
- **Evaluation Metrics**:
32+
- Accuracy, Precision, Recall, F1-Score
33+
- Mean Squared Error (MSE), Mean Absolute Error (MAE)
34+
- ROC-AUC for classification
35+
- **Resources**:
36+
- *Book*: "An Introduction to Statistical Learning" by James et al.
37+
- *Course*: Coursera’s Machine Learning by Andrew Ng
38+
- *Practice*: Kaggle’s “Intro to Machine Learning” course
39+
- **Tools**: Python, NumPy, Pandas, Scikit-learn
40+
- **Projects**: Predict house prices (regression), classify iris flowers (classification)
41+
42+
#### Introduction to Deep Learning
43+
- **Topics**:
44+
- **Neural Networks**: Perceptrons, Multi-Layer Perceptrons (MLPs)
45+
- **Activation Functions**: Sigmoid, ReLU, Tanh
46+
- **Backpropagation**: Gradient descent, loss functions (e.g., cross-entropy, MSE)
47+
- **Overfitting and Regularization**: Dropout, L2 regularization, data augmentation
48+
- **Resources**:
49+
- *Book*: "Deep Learning" by Goodfellow, Bengio, and Courville
50+
- *Course*: DeepLearning.AI’s Deep Learning Specialization
51+
- *Video*: 3Blue1Brown’s Neural Networks series
52+
- **Tools**: TensorFlow, PyTorch, Keras
53+
- **Projects**: Build a simple feedforward neural network for MNIST digit classification
54+
55+
#### Context of GPT
56+
- **Topics**:
57+
- **Natural Language Processing (NLP)**: Tokenization, embeddings (e.g., Word2Vec, GloVe)
58+
- **Language Models**: N-grams, probabilistic models
59+
- **Transformers**: Introduction to the architecture (self-attention, encoder-decoder)
60+
- **Resources**:
61+
- *Paper*: “Attention is All You Need” by Vaswani et al. (2017)
62+
- *Blog*: Jay Alammar’s “The Illustrated Transformer”
63+
- *Course*: Hugging Face’s NLP Course
64+
- **Tools**: Hugging Face Transformers, NLTK, spaCy
65+
- **Projects**: Text classification with pre-trained embeddings (e.g., sentiment analysis)
66+
67+
---
68+
69+
### 2. Intermediate Concepts
70+
**Objective**: Deepen understanding of advanced ML algorithms, DL architectures, and the evolution of GPT models.
71+
72+
#### Advanced Machine Learning
73+
- **Topics**:
74+
- **Ensemble Methods**: Bagging, Boosting (e.g., AdaBoost, Gradient Boosting, XGBoost)
75+
- **Feature Engineering**: Feature selection, scaling, encoding categorical variables
76+
- **Dimensionality Reduction**: t-SNE, UMAP
77+
- **Reinforcement Learning**: Deep Q-Networks (DQN), Policy Gradients
78+
- **Resources**:
79+
- *Book*: "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron
80+
- *Course*: Fast.ai’s Practical Deep Learning for Coders
81+
- *Practice*: Kaggle competitions (e.g., Titanic survival prediction)
82+
- **Tools**: XGBoost, LightGBM, OpenAI Gym (for RL)
83+
- **Projects**: Build a boosted tree model for customer churn prediction
84+
85+
#### Deep Learning Architectures
86+
- **Topics**:
87+
- **Convolutional Neural Networks (CNNs)**: AlexNet (2012), ResNet (2015), Batch Normalization
88+
- **Recurrent Neural Networks (RNNs)**: LSTMs, GRUs, sequence modeling
89+
- **Attention Mechanisms**: Bahdanau attention (2015), self-attention in Transformers
90+
- **Generative Models**: GANs (2014), Variational Autoencoders (VAEs)
91+
- **Resources**:
92+
- *Paper*: “Deep Residual Learning for Image Recognition” (ResNet, 2015)
93+
- *Course*: Stanford’s CS231n (Convolutional Neural Networks for Visual Recognition)
94+
- *Blog*: Distill.pub for visualizations of DL concepts
95+
- **Tools**: PyTorch, TensorFlow, OpenCV
96+
- **Projects**: Image classification with ResNet, text generation with LSTMs
97+
98+
#### GPT and Transformers
99+
- **Topics**:
100+
- **GPT-1 (2018)**: 117M parameters, unidirectional transformer, BookCorpus dataset
101+
- **GPT-2 (2019)**: 1.5B parameters, zero-shot learning, WebText dataset
102+
- **Transformer Components**: Positional encodings, multi-head attention, feedforward layers
103+
- **Pre-training and Fine-tuning**: Unsupervised pre-training, task-specific fine-tuning
104+
- **Resources**:
105+
- *Paper*: “Improving Language Understanding by Generative Pre-Training” (GPT-1, 2018)
106+
- *Course*: DeepLearning.AI’s NLP Specialization
107+
- *Tool*: Hugging Face’s Transformers library
108+
- **Projects**: Fine-tune a pre-trained GPT-2 model for text generation
109+
110+
---
111+
112+
### 3. Advanced Concepts
113+
**Objective**: Master cutting-edge techniques, scaling laws, and multimodal GPT models, focusing on research and application.
114+
115+
#### Advanced Machine Learning
116+
- **Topics**:
117+
- **Scaling Laws**: Compute, data, and model size relationships (Chinchilla, 2022)
118+
- **Reinforcement Learning from Human Feedback (RLHF)**: Aligning models with human preferences
119+
- **Federated Learning**: Decentralized training for privacy
120+
- **Bayesian Methods**: Probabilistic modeling, uncertainty quantification
121+
- **Resources**:
122+
- *Paper*: “Training Compute-Optimal Large Language Models” (Chinchilla, 2022)
123+
- *Course*: Advanced RL by DeepMind (online lectures)
124+
- *Tool*: Flower (for federated learning)
125+
- **Projects**: Implement RLHF for a small language model, experiment with federated learning
126+
127+
#### Deep Learning and Multimodality
128+
- **Topics**:
129+
- **Multimodal Models**: GPT-4 (2023), DALL-E (2021), Sora (2024)
130+
- **Diffusion Models**: Stable Diffusion, DALL-E 2 for image generation
131+
- **Mixture-of-Experts (MoE)**: Mixtral 8x7B (2023) for efficient scaling
132+
- **Reasoning Enhancements**: Chain-of-Thought prompting, mathematical reasoning
133+
- **Resources**:
134+
- *Paper*: “DALL-E: Creating Images from Text” (2021)
135+
- *Blog*: Lilian Weng’s blog on diffusion models
136+
- *Tool*: Stable Diffusion, OpenAI’s CLIP
137+
- **Projects**: Generate images with Stable Diffusion, experiment with multimodal inputs
138+
139+
#### GPT and Large Language Models
140+
- **Topics**:
141+
- **GPT-3 (2020)**: 175B parameters, few-shot learning
142+
- **GPT-4 (2023)**: Multimodal capabilities, improved reasoning
143+
- **Claude (2023)**: Constitutional AI, focus on safety
144+
- **LLaMA (2023)**: Open-source models for research
145+
- **Agent Frameworks**: Tool use, planning, memory-augmented models
146+
- **Resources**:
147+
- *Paper*: “Language Models are Few-Shot Learners” (GPT-3, 2020)
148+
- *Tool*: Hugging Face, xAI’s Grok API (see https://x.ai/api)
149+
- *Course*: Advanced NLP with Transformers (online)
150+
- **Projects**: Build a chatbot with GPT-3 API, experiment with LLaMA for research tasks
151+
152+
---
153+
154+
### 4. Practical Applications and Trends
155+
**Objective**: Apply knowledge to real-world problems and stay updated with trends.
156+
157+
#### Applications
158+
- **Computer Vision**: Object detection (YOLO), image segmentation (U-Net)
159+
- **NLP**: Chatbots, summarization, translation
160+
- **Multimodal AI**: Text-to-image (DALL-E), text-to-video (Sora)
161+
- **Scientific Discovery**: Protein folding (AlphaFold), drug discovery
162+
- **Code Generation**: Codex, GitHub Copilot
163+
- **Projects**:
164+
- Build a custom chatbot using Hugging Face Transformers
165+
- Generate videos with Sora (if API access is available)
166+
- Develop a code assistant with Codex
167+
168+
#### Trends (2010–2024)
169+
- **Scaling Laws**: Larger models, datasets, and compute (e.g., PaLM, 2022)
170+
- **Emergent Abilities**: In-context learning, zero-shot capabilities
171+
- **Multimodality**: Unified models for text, image, audio (e.g., GPT-4V)
172+
- **RLHF**: Aligning models with human values (e.g., ChatGPT)
173+
- **Democratization**: Open-source models (LLaMA), accessible APIs (xAI’s Grok API)
174+
175+
#### Staying Updated
176+
- **Conferences**: NeurIPS, ICML, ICLR, ACL
177+
- **Journals/Blogs**: arXiv, Distill.pub, Hugging Face blog
178+
- **Communities**: X posts (search for #MachineLearning, #DeepLearning), Kaggle forums
179+
- **Tools**: Monitor xAI’s updates at https://x.ai/grok, https://x.ai/api
180+
181+
---
182+
183+
### 5. Study Plan
184+
**Duration**: 6–12 months, depending on prior knowledge and time commitment.
185+
186+
- **Months 1–2**: Master ML basics (Scikit-learn, supervised/unsupervised learning)
187+
- **Months 3–4**: Dive into DL (CNNs, RNNs, PyTorch/TensorFlow)
188+
- **Months 5–6**: Study Transformers and GPT-1/2 (Hugging Face, fine-tuning)
189+
- **Months 7–9**: Explore advanced DL (ResNet, GANs, diffusion models)
190+
- **Months 10–12**: Work on GPT-3/4, multimodal models, and real-world projects
191+
192+
**Weekly Routine**:
193+
- 10–15 hours: Study theory (books, papers)
194+
- 5–10 hours: Coding practice (Kaggle, GitHub)
195+
- 2–3 hours: Stay updated (arXiv, X posts)
196+
197+
---
198+
199+
### 6. Tools and Platforms
200+
- **Programming**: Python, Jupyter Notebooks
201+
- **ML Frameworks**: Scikit-learn, TensorFlow, PyTorch
202+
- **NLP Tools**: Hugging Face, spaCy, NLTK
203+
- **APIs**: xAI’s Grok API (https://x.ai/api), OpenAI API
204+
- **Cloud Platforms**: Google Colab, AWS, Azure
205+
- **Visualization**: Matplotlib, Seaborn, Chart.js (for charts)
206+
207+
**Example Chart** (to visualize ML/DL progress):
208+
```chartjs
209+
{
210+
"type": "line",
211+
"data": {
212+
"labels": ["2010", "2012", "2014", "2016", "2018", "2020", "2022", "2024"],
213+
"datasets": [
214+
{
215+
"label": "Model Parameters (Billions)",
216+
"data": [0.01, 0.06, 0.1, 0.3, 1.5, 175, 540, 1000],
217+
"borderColor": "#4CAF50",
218+
"fill": false
219+
},
220+
{
221+
"label": "ImageNet Top-5 Error (%)",
222+
"data": [28, 15.3, 7.3, 3.57, 2.25, 1.5, 1.0, 0.8],
223+
"borderColor": "#2196F3",
224+
"fill": false
225+
}
226+
]
227+
},
228+
"options": {
229+
"title": {
230+
"display": true,
231+
"text": "ML/DL Progress (2010–2024)"
232+
},
233+
"scales": {
234+
"yAxes": [
235+
{
236+
"scaleLabel": {
237+
"display": true,
238+
"labelString": "Value"
239+
}
240+
}
241+
]
242+
}
243+
}
244+
}
245+
```
246+
247+
---
248+
249+
### 7. Additional Notes
250+
- **xAI Products**: Access Grok 3 on grok.com, x.com, or mobile apps (iOS/Android). Free plans have usage limits; SuperGrok offers higher quotas (details at https://x.ai/grok). For API access, see https://x.ai/api. Note: Grok 3.5 is not available as of October 2024.
251+
- **Ethics and Safety**: Study RLHF and constitutional AI (e.g., Claude) to understand model alignment.
252+
- **Career Paths**: Data scientist, ML engineer, NLP researcher, AI ethicist.
253+
254+
This study map provides a structured path to mastering ML, DL, and GPT, with practical tools and resources to stay current in this rapidly evolving field. Let me know if you want to dive deeper into any specific area!

0 commit comments

Comments
 (0)