diff --git a/glove/glove.py b/glove/glove.py index ec90ca3..105c687 100644 --- a/glove/glove.py +++ b/glove/glove.py @@ -297,7 +297,7 @@ def most_similar(self, word, number=5): except KeyError: raise Exception('Word not in dictionary') - return self._similarity_query(self.word_vectors[word_idx], number)[1:] + return self._similarity_query(self.word_vectors[word_idx], number + 1)[1:] def most_similar_paragraph(self, paragraph, number=5, **kwargs): """ diff --git a/readme.md b/readme.md index 304f72a..cf060ba 100644 --- a/readme.md +++ b/readme.md @@ -30,28 +30,28 @@ If you want to process a wikipedia corpus, you can pass file from [here](http:// Running this on my machine yields roughly the following results: ``` -In [1]: glove.most_similar('physics') +In [1]: glove.most_similar('physics', number=4) Out[1]: [('biology', 0.89425889335342257), ('chemistry', 0.88913708236100086), ('quantum', 0.88859617025616333), ('mechanics', 0.88821824562025431)] -In [4]: glove.most_similar('north') +In [4]: glove.most_similar('north', number=4) Out[4]: [('west', 0.99047203572917908), ('south', 0.98655786905501008), ('east', 0.97914140138065575), ('coast', 0.97680427897282185)] -In [6]: glove.most_similar('queen') +In [6]: glove.most_similar('queen', number=4) Out[6]: [('anne', 0.88284931171714842), ('mary', 0.87615260138308615), ('elizabeth', 0.87362497374226267), ('prince', 0.87011034923161801)] -In [19]: glove.most_similar('car') +In [19]: glove.most_similar('car', number=4) Out[19]: [('race', 0.89549347066796814), ('driver', 0.89350343749207217),