|
| 1 | +//===-- Implementation header for asinf -------------------------*- C++ -*-===// |
| 2 | +// |
| 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +// See https://llvm.org/LICENSE.txt for license information. |
| 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | +// |
| 7 | +//===----------------------------------------------------------------------===// |
| 8 | + |
| 9 | +#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_ASINF_H |
| 10 | +#define LLVM_LIBC_SRC___SUPPORT_MATH_ASINF_H |
| 11 | + |
| 12 | +#include "inv_trigf_utils.h" |
| 13 | +#include "src/__support/FPUtil/FEnvImpl.h" |
| 14 | +#include "src/__support/FPUtil/FPBits.h" |
| 15 | +#include "src/__support/FPUtil/except_value_utils.h" |
| 16 | +#include "src/__support/FPUtil/multiply_add.h" |
| 17 | +#include "src/__support/FPUtil/sqrt.h" |
| 18 | +#include "src/__support/macros/config.h" |
| 19 | +#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| 20 | +#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA |
| 21 | + |
| 22 | +namespace LIBC_NAMESPACE_DECL { |
| 23 | + |
| 24 | +namespace math { |
| 25 | + |
| 26 | +LIBC_INLINE static constexpr float asinf(float x) { |
| 27 | + using namespace inv_trigf_utils_internal; |
| 28 | + |
| 29 | +#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 30 | + constexpr size_t N_EXCEPTS = 2; |
| 31 | + |
| 32 | + // Exceptional values when |x| <= 0.5 |
| 33 | + constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_LO = {{ |
| 34 | + // (inputs, RZ output, RU offset, RD offset, RN offset) |
| 35 | + // x = 0x1.137f0cp-5, asinf(x) = 0x1.138c58p-5 (RZ) |
| 36 | + {0x3d09bf86, 0x3d09c62c, 1, 0, 1}, |
| 37 | + // x = 0x1.cbf43cp-4, asinf(x) = 0x1.cced1cp-4 (RZ) |
| 38 | + {0x3de5fa1e, 0x3de6768e, 1, 0, 0}, |
| 39 | + }}; |
| 40 | + |
| 41 | + // Exceptional values when 0.5 < |x| <= 1 |
| 42 | + constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_HI = {{ |
| 43 | + // (inputs, RZ output, RU offset, RD offset, RN offset) |
| 44 | + // x = 0x1.107434p-1, asinf(x) = 0x1.1f4b64p-1 (RZ) |
| 45 | + {0x3f083a1a, 0x3f0fa5b2, 1, 0, 0}, |
| 46 | + // x = 0x1.ee836cp-1, asinf(x) = 0x1.4f0654p0 (RZ) |
| 47 | + {0x3f7741b6, 0x3fa7832a, 1, 0, 0}, |
| 48 | + }}; |
| 49 | +#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 50 | + |
| 51 | + using namespace inv_trigf_utils_internal; |
| 52 | + using FPBits = typename fputil::FPBits<float>; |
| 53 | + |
| 54 | + FPBits xbits(x); |
| 55 | + uint32_t x_uint = xbits.uintval(); |
| 56 | + uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU; |
| 57 | + constexpr double SIGN[2] = {1.0, -1.0}; |
| 58 | + uint32_t x_sign = x_uint >> 31; |
| 59 | + |
| 60 | + // |x| <= 0.5-ish |
| 61 | + if (x_abs < 0x3f04'471dU) { |
| 62 | + // |x| < 0x1.d12edp-12 |
| 63 | + if (LIBC_UNLIKELY(x_abs < 0x39e8'9768U)) { |
| 64 | + // When |x| < 2^-12, the relative error of the approximation asin(x) ~ x |
| 65 | + // is: |
| 66 | + // |asin(x) - x| / |asin(x)| < |x^3| / (6|x|) |
| 67 | + // = x^2 / 6 |
| 68 | + // < 2^-25 |
| 69 | + // < epsilon(1)/2. |
| 70 | + // So the correctly rounded values of asin(x) are: |
| 71 | + // = x + sign(x)*eps(x) if rounding mode = FE_TOWARDZERO, |
| 72 | + // or (rounding mode = FE_UPWARD and x is |
| 73 | + // negative), |
| 74 | + // = x otherwise. |
| 75 | + // To simplify the rounding decision and make it more efficient, we use |
| 76 | + // fma(x, 2^-25, x) instead. |
| 77 | + // An exhaustive test shows that this formula work correctly for all |
| 78 | + // rounding modes up to |x| < 0x1.d12edp-12. |
| 79 | + // Note: to use the formula x + 2^-25*x to decide the correct rounding, we |
| 80 | + // do need fma(x, 2^-25, x) to prevent underflow caused by 2^-25*x when |
| 81 | + // |x| < 2^-125. For targets without FMA instructions, we simply use |
| 82 | + // double for intermediate results as it is more efficient than using an |
| 83 | + // emulated version of FMA. |
| 84 | +#if defined(LIBC_TARGET_CPU_HAS_FMA_FLOAT) |
| 85 | + return fputil::multiply_add(x, 0x1.0p-25f, x); |
| 86 | +#else |
| 87 | + double xd = static_cast<double>(x); |
| 88 | + return static_cast<float>(fputil::multiply_add(xd, 0x1.0p-25, xd)); |
| 89 | +#endif // LIBC_TARGET_CPU_HAS_FMA_FLOAT |
| 90 | + } |
| 91 | + |
| 92 | +#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 93 | + // Check for exceptional values |
| 94 | + if (auto r = ASINF_EXCEPTS_LO.lookup_odd(x_abs, x_sign); |
| 95 | + LIBC_UNLIKELY(r.has_value())) |
| 96 | + return r.value(); |
| 97 | +#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 98 | + |
| 99 | + // For |x| <= 0.5, we approximate asinf(x) by: |
| 100 | + // asin(x) = x * P(x^2) |
| 101 | + // Where P(X^2) = Q(X) is a degree-20 minimax even polynomial approximating |
| 102 | + // asin(x)/x on [0, 0.5] generated by Sollya with: |
| 103 | + // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|], |
| 104 | + // [|1, D...|], [0, 0.5]); |
| 105 | + // An exhaustive test shows that this approximation works well up to a |
| 106 | + // little more than 0.5. |
| 107 | + double xd = static_cast<double>(x); |
| 108 | + double xsq = xd * xd; |
| 109 | + double x3 = xd * xsq; |
| 110 | + double r = asin_eval(xsq); |
| 111 | + return static_cast<float>(fputil::multiply_add(x3, r, xd)); |
| 112 | + } |
| 113 | + |
| 114 | + // |x| > 1, return NaNs. |
| 115 | + if (LIBC_UNLIKELY(x_abs > 0x3f80'0000U)) { |
| 116 | + if (xbits.is_signaling_nan()) { |
| 117 | + fputil::raise_except_if_required(FE_INVALID); |
| 118 | + return FPBits::quiet_nan().get_val(); |
| 119 | + } |
| 120 | + |
| 121 | + if (x_abs <= 0x7f80'0000U) { |
| 122 | + fputil::set_errno_if_required(EDOM); |
| 123 | + fputil::raise_except_if_required(FE_INVALID); |
| 124 | + } |
| 125 | + |
| 126 | + return FPBits::quiet_nan().get_val(); |
| 127 | + } |
| 128 | + |
| 129 | +#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 130 | + // Check for exceptional values |
| 131 | + if (auto r = ASINF_EXCEPTS_HI.lookup_odd(x_abs, x_sign); |
| 132 | + LIBC_UNLIKELY(r.has_value())) |
| 133 | + return r.value(); |
| 134 | +#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 135 | + |
| 136 | + // When |x| > 0.5, we perform range reduction as follow: |
| 137 | + // |
| 138 | + // Assume further that 0.5 < x <= 1, and let: |
| 139 | + // y = asin(x) |
| 140 | + // We will use the double angle formula: |
| 141 | + // cos(2y) = 1 - 2 sin^2(y) |
| 142 | + // and the complement angle identity: |
| 143 | + // x = sin(y) = cos(pi/2 - y) |
| 144 | + // = 1 - 2 sin^2 (pi/4 - y/2) |
| 145 | + // So: |
| 146 | + // sin(pi/4 - y/2) = sqrt( (1 - x)/2 ) |
| 147 | + // And hence: |
| 148 | + // pi/4 - y/2 = asin( sqrt( (1 - x)/2 ) ) |
| 149 | + // Equivalently: |
| 150 | + // asin(x) = y = pi/2 - 2 * asin( sqrt( (1 - x)/2 ) ) |
| 151 | + // Let u = (1 - x)/2, then: |
| 152 | + // asin(x) = pi/2 - 2 * asin( sqrt(u) ) |
| 153 | + // Moreover, since 0.5 < x <= 1: |
| 154 | + // 0 <= u < 1/4, and 0 <= sqrt(u) < 0.5, |
| 155 | + // And hence we can reuse the same polynomial approximation of asin(x) when |
| 156 | + // |x| <= 0.5: |
| 157 | + // asin(x) ~ pi/2 - 2 * sqrt(u) * P(u), |
| 158 | + |
| 159 | + xbits.set_sign(Sign::POS); |
| 160 | + double sign = SIGN[x_sign]; |
| 161 | + double xd = static_cast<double>(xbits.get_val()); |
| 162 | + double u = fputil::multiply_add(-0.5, xd, 0.5); |
| 163 | + double c1 = sign * (-2 * fputil::sqrt<double>(u)); |
| 164 | + double c2 = fputil::multiply_add(sign, M_MATH_PI_2, c1); |
| 165 | + double c3 = c1 * u; |
| 166 | + |
| 167 | + double r = asin_eval(u); |
| 168 | + return static_cast<float>(fputil::multiply_add(c3, r, c2)); |
| 169 | +} |
| 170 | + |
| 171 | +} // namespace math |
| 172 | + |
| 173 | +} // namespace LIBC_NAMESPACE_DECL |
| 174 | + |
| 175 | +#endif // LLVM_LIBC_SRC___SUPPORT_MATH_ASINF_H |
0 commit comments