You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -48,7 +48,7 @@ Uplift modeling estimates a causal effect of treatment and uses it to effectivel
48
48
49
49
* Select a tiny group of customers in the campaign where a price per customer is high.
50
50
51
-
Read more about uplift modeling problem in `User Guide <https://scikit-uplift.readthedocs.io/en/latest/user_guide/index.html>`__,
51
+
Read more about uplift modeling problem in `User Guide <https://www.uplift-modeling.com/en/latest/user_guide/index.html>`__.
52
52
53
53
Articles in russian on habr.com: `Part 1 <https://habr.com/ru/company/ru_mts/blog/485980/>`__
54
54
and `Part 2 <https://habr.com/ru/company/ru_mts/blog/485976/>`__.
@@ -87,7 +87,7 @@ Or install from source:
87
87
Documentation
88
88
--------------
89
89
90
-
The full documentation is available at `scikit-uplift.readthedocs.io`_.
90
+
The full documentation is available at `uplift-modeling.com`_.
91
91
92
92
Or you can build the documentation locally using `Sphinx <http://sphinx-doc.org/>`_ 1.4 or later:
93
93
@@ -106,6 +106,8 @@ See the **RetailHero tutorial notebook** (`EN <https://nbviewer.jupyter.org/gith
106
106
107
107
**Train and predict uplift model**
108
108
109
+
Use the intuitive python API to train uplift models with `sklift.models <https://www.uplift-modeling.com/en/latest/api/models/index.html>`__.
110
+
109
111
.. code-block:: python
110
112
111
113
# import approaches
@@ -130,6 +132,8 @@ See the **RetailHero tutorial notebook** (`EN <https://nbviewer.jupyter.org/gith
130
132
131
133
**Evaluate your uplift model**
132
134
135
+
Uplift model evaluation metrics are available in `sklift.metrics <https://www.uplift-modeling.com/en/latest/api/metrics/index.html>`__.
136
+
133
137
.. code-block:: python
134
138
135
139
# import metrics to evaluate your model
@@ -153,6 +157,8 @@ See the **RetailHero tutorial notebook** (`EN <https://nbviewer.jupyter.org/gith
153
157
154
158
**Vizualize the results**
155
159
160
+
Visualize performance metrics with `sklift.viz <https://www.uplift-modeling.com/en/latest/api/viz/index.html>`__.
161
+
156
162
.. code-block:: python
157
163
158
164
# import vizualisation tools
@@ -170,55 +176,20 @@ Development
170
176
171
177
We welcome new contributors of all experience levels.
172
178
173
-
- Please see our `Contributing Guide <https://scikit-uplift.readthedocs.io/en/latest/contributing.html>`_ for more details.
179
+
- Please see our `Contributing Guide <https://www.uplift-modeling.com/en/latest/contributing.html>`_ for more details.
174
180
- By participating in this project, you agree to abide by its `Code of Conduct <https://github.com/maks-sh/scikit-uplift/blob/master/.github/CODE_OF_CONDUCT.md>`__.
0 commit comments