Skip to content

Commit 65fcdbe

Browse files
committed
🐜 Fix docs main page
1 parent 2e9235d commit 65fcdbe

File tree

1 file changed

+11
-11
lines changed

1 file changed

+11
-11
lines changed

docs/index.rst

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,3 @@
1-
.. meta::
2-
:description lang=en:
3-
scikit-uplift (sklift) is a Python module for uplift modeling and causal inference in scikit-learn style.
4-
51
.. _Part 1: https://habr.com/ru/company/ru_mts/blog/485980/
62
.. _Part 2: https://habr.com/ru/company/ru_mts/blog/485976/
73

@@ -19,7 +15,7 @@ scikit-uplift
1915

2016
Uplift prediction aims to estimate the causal impact of a treatment at the individual level.
2117

22-
More about uplift modelling problem read in russian on habr.com: `Part 1`_ and `Part 2`_.
18+
Read more about uplift modelling problem in :ref:`User guide <user_guide>`, also in russian on habr.com: `Part 1`_ and `Part 2`_.
2319

2420
Features
2521
#########
@@ -28,7 +24,7 @@ Features
2824

2925
- Applying any estimator adheres to scikit-learn conventions;
3026

31-
- All approaches can be used in sklearn.pipeline. See example of usage: |Open In Colab3|_.
27+
- All approaches can be used in sklearn.pipeline. See example of usage: |Open In Colab3|_;
3228

3329
- Almost all implemented approaches solve both the problem of classification and regression;
3430

@@ -39,7 +35,7 @@ Features
3935

4036
**The package currently supports the following methods:**
4137

42-
1. Solo Model (aka Treatment Dummy) approach
38+
1. Solo Model (aka Treatment Dummy and Treatment interaction) approach
4339
2. Class Transformation (aka Class Variable Transformation or Revert Label) approach
4440
3. Two Models (aka naïve approach, or difference score method, or double classifier approach) approach, including Dependent Data Representation
4541

@@ -48,6 +44,7 @@ Features
4844
1. Uplift@k
4945
2. Area Under Uplift Curve
5046
3. Area Under Qini Curve
47+
4. Weighted average uplift
5148

5249
Project info
5350
#############
@@ -56,12 +53,15 @@ Project info
5653
* Github examples: https://github.com/maks-sh/scikit-uplift/tree/master/notebooks
5754
* Documentation: https://scikit-uplift.readthedocs.io/en/latest/
5855
* Contributing guide: https://scikit-uplift.readthedocs.io/en/latest/contributing.html
59-
* License: MIT
56+
* License: `MIT <https://github.com/maks-sh/scikit-uplift/blob/master/LICENSE>`__
6057

61-
Contributing
58+
Community
6259
#############
6360

64-
We welcome new contributors of all experience levels. Please see our `Contributing Guide <https://scikit-uplift.readthedocs.io/en/latest/contributing.html>`_ for more details.
61+
We welcome new contributors of all experience levels.
62+
63+
- Please see our `Contributing Guide <https://scikit-uplift.readthedocs.io/en/latest/contributing.html>`_ for more details.
64+
- By participating in this project, you agree to abide by its `Code of Conduct <https://github.com/maks-sh/scikit-uplift/blob/master/.github/CODE_OF_CONDUCT.md>`__.
6565

6666
.. image:: https://sourcerer.io/fame/maks-sh/maks-sh/scikit-uplift/images/0
6767
:target: https://sourcerer.io/fame/maks-sh/maks-sh/scikit-uplift/links/0
@@ -160,7 +160,7 @@ Papers and materials
160160
Direct Marketing Analytics Journal, (3):14–21, 2007.
161161

162162
11. Devriendt, F., Guns, T., & Verbeke, W. 2020.
163-
Learning to rank for uplift modeling. ArXiv, abs/2002.05897.
163+
Learning to rank for uplift modeling. ArXiv, abs/2002.05897.
164164

165165
===============
166166

0 commit comments

Comments
 (0)