1- .. meta ::
2- :description lang=en:
3- scikit-uplift (sklift) is a Python module for uplift modeling and causal inference in scikit-learn style.
4-
51.. _Part 1 : https://habr.com/ru/company/ru_mts/blog/485980/
62.. _Part 2 : https://habr.com/ru/company/ru_mts/blog/485976/
73
@@ -19,7 +15,7 @@ scikit-uplift
1915
2016Uplift prediction aims to estimate the causal impact of a treatment at the individual level.
2117
22- More about uplift modelling problem read in russian on habr.com: `Part 1 `_ and `Part 2 `_.
18+ Read more about uplift modelling problem in :ref: ` User guide < user_guide >`, also in russian on habr.com: `Part 1 `_ and `Part 2 `_.
2319
2420Features
2521#########
@@ -28,7 +24,7 @@ Features
2824
2925- Applying any estimator adheres to scikit-learn conventions;
3026
31- - All approaches can be used in sklearn.pipeline. See example of usage: |Open In Colab3 |_.
27+ - All approaches can be used in sklearn.pipeline. See example of usage: |Open In Colab3 |_;
3228
3329- Almost all implemented approaches solve both the problem of classification and regression;
3430
@@ -39,7 +35,7 @@ Features
3935
4036**The package currently supports the following methods: **
4137
42- 1. Solo Model (aka Treatment Dummy) approach
38+ 1. Solo Model (aka Treatment Dummy and Treatment interaction ) approach
43392. Class Transformation (aka Class Variable Transformation or Revert Label) approach
44403. Two Models (aka naïve approach, or difference score method, or double classifier approach) approach, including Dependent Data Representation
4541
@@ -48,6 +44,7 @@ Features
48441. Uplift@k
49452. Area Under Uplift Curve
50463. Area Under Qini Curve
47+ 4. Weighted average uplift
5148
5249Project info
5350#############
@@ -56,12 +53,15 @@ Project info
5653* Github examples: https://github.com/maks-sh/scikit-uplift/tree/master/notebooks
5754* Documentation: https://scikit-uplift.readthedocs.io/en/latest/
5855* Contributing guide: https://scikit-uplift.readthedocs.io/en/latest/contributing.html
59- * License: MIT
56+ * License: ` MIT < https://github.com/maks-sh/scikit-uplift/blob/master/LICENSE >`__
6057
61- Contributing
58+ Community
6259#############
6360
64- We welcome new contributors of all experience levels. Please see our `Contributing Guide <https://scikit-uplift.readthedocs.io/en/latest/contributing.html >`_ for more details.
61+ We welcome new contributors of all experience levels.
62+
63+ - Please see our `Contributing Guide <https://scikit-uplift.readthedocs.io/en/latest/contributing.html >`_ for more details.
64+ - By participating in this project, you agree to abide by its `Code of Conduct <https://github.com/maks-sh/scikit-uplift/blob/master/.github/CODE_OF_CONDUCT.md >`__.
6565
6666.. image :: https://sourcerer.io/fame/maks-sh/maks-sh/scikit-uplift/images/0
6767 :target: https://sourcerer.io/fame/maks-sh/maks-sh/scikit-uplift/links/0
@@ -160,7 +160,7 @@ Papers and materials
160160 Direct Marketing Analytics Journal, (3):14–21, 2007.
161161
16216211. Devriendt, F., Guns, T., & Verbeke, W. 2020.
163- Learning to rank for uplift modeling. ArXiv, abs/2002.05897.
163+ Learning to rank for uplift modeling. ArXiv, abs/2002.05897.
164164
165165===============
166166
0 commit comments