|
| 1 | +from mlir import ir |
| 2 | +from pathlib import Path |
| 3 | + |
| 4 | +import mlir.extras.types as T |
| 5 | +import numpy as np |
| 6 | +from mlir.ir import InsertionPoint, IntegerAttr, UnitAttr |
| 7 | + |
| 8 | +from mlir.extras.ast.canonicalize import canonicalize |
| 9 | +from mlir.extras.context import RAIIMLIRContextModule |
| 10 | +from mlir.extras.dialects.ext import memref, scf, arith, gpu, llvm |
| 11 | +from mlir.dialects import math |
| 12 | + |
| 13 | +# noinspection PyUnresolvedReferences |
| 14 | +from mlir.extras.dialects.ext.gpu import ( |
| 15 | + block_idx, |
| 16 | + thread_idx, |
| 17 | + grid_dim, |
| 18 | + func as gpu_func, |
| 19 | + set_container_module, |
| 20 | + module, |
| 21 | + get_compile_object_bytes, |
| 22 | +) |
| 23 | +from mlir.extras.runtime.passes import run_pipeline, Pipeline |
| 24 | +from mlir.extras.util import find_ops, walk_blocks_in_operation, walk_operations |
| 25 | +from mlir.extras.util.liveness import BlockInfoBuilder, Liveness |
| 26 | + |
| 27 | +# just so it doesn't get DCE'd by black/reformat |
| 28 | +# TypeError: 'mlir._mlir_libs._mlir.ir.BlockArgument' object is not subscriptable |
| 29 | +_ = memref |
| 30 | + |
| 31 | +ctx = RAIIMLIRContextModule() |
| 32 | +set_container_module(ctx.module) |
| 33 | + |
| 34 | + |
| 35 | +# just a default attr - actual target is set blow |
| 36 | +@module("kernels", [f'#rocdl.target<abi = "500">']) |
| 37 | +def gpu_module(): |
| 38 | + pass |
| 39 | + |
| 40 | + |
| 41 | +ip = InsertionPoint.at_block_begin(gpu_module.regions[0].blocks[0]) |
| 42 | +ip.__enter__() |
| 43 | + |
| 44 | +Bc = 32 |
| 45 | +Br = 32 |
| 46 | + |
| 47 | +B = 16 |
| 48 | +nh = 12 |
| 49 | +N = 128 |
| 50 | +d = 128 |
| 51 | + |
| 52 | +softmax_scale = 1.0 / float(np.sqrt(d)) |
| 53 | + |
| 54 | + |
| 55 | +rank_reduce = memref.rank_reduce |
| 56 | + |
| 57 | + |
| 58 | +# https://github.com/tspeterkim/flash-attention-minimal/blob/main/flash.cu |
| 59 | +@gpu_func(emit=True) |
| 60 | +@canonicalize(using=[scf.canonicalizer, arith.canonicalizer]) |
| 61 | +def flash_attention( |
| 62 | + Q: T.memref(B, nh, N, d, T.f32()), |
| 63 | + K: T.memref(B, nh, N, d, T.f32()), |
| 64 | + V: T.memref(B, nh, N, d, T.f32()), |
| 65 | + l: T.memref(B, nh, N, T.f32()), |
| 66 | + m: T.memref(B, nh, N, T.f32()), |
| 67 | + O: T.memref(B, nh, N, d, T.f32()), |
| 68 | +): |
| 69 | + tx = thread_idx.x |
| 70 | + # batch idx, head_idx |
| 71 | + bx, by = block_idx.x, block_idx.y |
| 72 | + # gpu.printf("bx %ld, by %ld\n", bx, by) |
| 73 | + |
| 74 | + # Offset into Q,K,V,O,l,m - different for each batch and head |
| 75 | + K = K[bx, by, :, :, rank_reduce] |
| 76 | + V = V[bx, by, :, :, rank_reduce] |
| 77 | + Q = Q[bx, by, :, :, rank_reduce] |
| 78 | + O = O[bx, by, :, :, rank_reduce] |
| 79 | + l = l[bx, by, :, rank_reduce] |
| 80 | + m = m[bx, by, :, rank_reduce] |
| 81 | + |
| 82 | + # Define SRAM for Q,K,V,S |
| 83 | + sram = gpu.dynamic_shared_memory() |
| 84 | + Qi = memref.view(sram, (Br, d), dtype=T.f32()) |
| 85 | + Kj = memref.view(sram, (Bc, d), dtype=T.f32(), shift=Qi.n_elements) |
| 86 | + Vj = memref.view(sram, (Bc, d), dtype=T.f32(), shift=Qi.n_elements + Kj.n_elements) |
| 87 | + S = memref.view( |
| 88 | + sram, |
| 89 | + (Br, Bc), |
| 90 | + dtype=T.f32(), |
| 91 | + shift=Qi.n_elements + Kj.n_elements + Vj.n_elements, |
| 92 | + ) |
| 93 | + |
| 94 | + for bc in scf.range_(0, N, Bc): |
| 95 | + # Load Kj, Vj to SRAM |
| 96 | + K_ = K[bc : bc + 1, :] |
| 97 | + V_ = V[bc : bc + 1, :] |
| 98 | + for x in scf.range_(0, d): |
| 99 | + Kj[tx, x] = K_[tx, x] |
| 100 | + Vj[tx, x] = V_[tx, x] |
| 101 | + |
| 102 | + for br in scf.range_(0, N, Br): |
| 103 | + # Load Qi to SRAM, l and m to registers |
| 104 | + Q_ = Q[br : br + 1, :] |
| 105 | + for x in scf.range_(0, d): |
| 106 | + Qi[tx, x] = Q_[tx, x] |
| 107 | + |
| 108 | + l_ = l[br : br + 1] |
| 109 | + m_ = m[br : br + 1] |
| 110 | + row_l_prev = l_[tx] |
| 111 | + row_m_prev = m_[tx] |
| 112 | + |
| 113 | + # S = QK^T, row_m = rowmax(S) |
| 114 | + row_m: T.f32() = float(np.finfo(np.float32).min) |
| 115 | + for y, row_m, _ in scf.range_(0, Bc, iter_args=[row_m]): |
| 116 | + sum: T.f32() = 0.0 |
| 117 | + for x, sum, _ in scf.range_(0, d, iter_args=[sum]): |
| 118 | + sum += Qi[tx, x] * Kj[y, x] |
| 119 | + sum = yield sum |
| 120 | + |
| 121 | + sum *= softmax_scale |
| 122 | + S[tx, y] = sum |
| 123 | + |
| 124 | + if sum > row_m: |
| 125 | + row_m_ = yield sum |
| 126 | + else: |
| 127 | + row_m_ = yield row_m |
| 128 | + |
| 129 | + row_m = yield row_m_ |
| 130 | + |
| 131 | + # P = exp(S - row_m), row_l = rowsum(P) |
| 132 | + row_l: T.f32() = 0.0 |
| 133 | + for y, row_l, _ in scf.range_(0, Bc, iter_args=[row_l]): |
| 134 | + S[tx, y] = math.exp(S[tx, y] - row_m) |
| 135 | + row_l += S[tx, y] |
| 136 | + row_l = yield row_l |
| 137 | + |
| 138 | + # Compute new m and l |
| 139 | + row_m_new = arith.maximumf(row_m_prev, row_m) |
| 140 | + row_l_new = ( |
| 141 | + math.exp(row_m_prev - row_m_new) * row_l_prev |
| 142 | + + math.exp(row_m - row_m_new) * row_l |
| 143 | + ) |
| 144 | + div = 1.0 / row_l_new |
| 145 | + f1 = row_l_prev * math.exp(row_m_prev - row_m_new) |
| 146 | + f2 = math.exp(row_m - row_m_new) |
| 147 | + |
| 148 | + # Write O, l, m to HBM |
| 149 | + O_ = O[br : br + 1, :] |
| 150 | + for x in scf.range_(0, d): |
| 151 | + pv: T.f32() = 0.0 # Pij * Vj |
| 152 | + for y, pv, _ in scf.range_(0, Bc, iter_args=[pv]): |
| 153 | + pv += S[tx, y] * Vj[y, x] |
| 154 | + pv = yield pv |
| 155 | + |
| 156 | + O_[tx, x] = div * (f1 * O_[tx, x] + f2 * pv) |
| 157 | + |
| 158 | + l_[tx] = row_l_new |
| 159 | + m_[tx] = row_m_new |
| 160 | + |
| 161 | + gpu.barrier() |
| 162 | + |
| 163 | + |
| 164 | +ip.__exit__(None, None, None) |
| 165 | + |
| 166 | +assert gpu_module.operation.verify() |
| 167 | +l = Liveness(gpu_module) |
| 168 | +print(l) |
0 commit comments