|
| 1 | +//! # Experimental Emergency Teleportation |
| 2 | +//! |
| 3 | +//! Part two implements a 3D version of binary search. Starting with a single cube that encloses all |
| 4 | +//! nanbots, each cube is further split into 8 smaller cubes until we find the answer. |
| 5 | +//! Cubes are stored in a [`MinHeap`] ordered by: |
| 6 | +//! |
| 7 | +//! * Greatest number of nanobots in range. |
| 8 | +//! * Least distance to origin. |
| 9 | +//! * Least size. |
| 10 | +//! |
| 11 | +//! This means that when we encounter a cube of size 1 we can return the coordinates, |
| 12 | +//! since we know that: |
| 13 | +//! |
| 14 | +//! * There are no cubes within range of more nanobots. |
| 15 | +//! * There are no cubes that are closer. |
| 16 | +//! * The coordinates cannot be refined any further. |
| 17 | +//! |
| 18 | +//! [`MinHeap`]: crate::util::heap |
| 19 | +use crate::util::heap::*; |
| 20 | +use crate::util::iter::*; |
| 21 | +use crate::util::parse::*; |
| 22 | + |
| 23 | +pub struct Nanobot { |
| 24 | + x: i32, |
| 25 | + y: i32, |
| 26 | + z: i32, |
| 27 | + r: i32, |
| 28 | +} |
| 29 | + |
| 30 | +impl Nanobot { |
| 31 | + fn from([x, y, z, r]: [i32; 4]) -> Nanobot { |
| 32 | + Nanobot { x, y, z, r } |
| 33 | + } |
| 34 | + |
| 35 | + fn manhattan(&self, other: &Nanobot) -> i32 { |
| 36 | + (self.x - other.x).abs() + (self.y - other.y).abs() + (self.z - other.z).abs() |
| 37 | + } |
| 38 | +} |
| 39 | + |
| 40 | +struct Cube { |
| 41 | + x1: i32, |
| 42 | + x2: i32, |
| 43 | + y1: i32, |
| 44 | + y2: i32, |
| 45 | + z1: i32, |
| 46 | + z2: i32, |
| 47 | +} |
| 48 | + |
| 49 | +impl Cube { |
| 50 | + fn new(x1: i32, x2: i32, y1: i32, y2: i32, z1: i32, z2: i32) -> Cube { |
| 51 | + Cube { x1, x2, y1, y2, z1, z2 } |
| 52 | + } |
| 53 | + |
| 54 | + /// Split the cube into 8 non-overlapping sub-cubes. |
| 55 | + /// Since each cube size is always of power of two, we can safely divide by 2. |
| 56 | + fn split(&self) -> [Cube; 8] { |
| 57 | + let Cube { x1, x2, y1, y2, z1, z2 } = *self; |
| 58 | + |
| 59 | + // Lower and upper halves of the new sub-cubes. |
| 60 | + let lx = (self.x1 + self.x2) / 2; |
| 61 | + let ly = (self.y1 + self.y2) / 2; |
| 62 | + let lz = (self.z1 + self.z2) / 2; |
| 63 | + let ux = lx + 1; |
| 64 | + let uy = ly + 1; |
| 65 | + let uz = lz + 1; |
| 66 | + |
| 67 | + // 8 possible permutations of lower and upper halves for each axis. |
| 68 | + [ |
| 69 | + Cube::new(x1, lx, y1, ly, z1, lz), |
| 70 | + Cube::new(ux, x2, y1, ly, z1, lz), |
| 71 | + Cube::new(x1, lx, uy, y2, z1, lz), |
| 72 | + Cube::new(ux, x2, uy, y2, z1, lz), |
| 73 | + Cube::new(x1, lx, y1, ly, uz, z2), |
| 74 | + Cube::new(ux, x2, y1, ly, uz, z2), |
| 75 | + Cube::new(x1, lx, uy, y2, uz, z2), |
| 76 | + Cube::new(ux, x2, uy, y2, uz, z2), |
| 77 | + ] |
| 78 | + } |
| 79 | + |
| 80 | + // Compute the Manattan distance from the faces of the cube to the octohedron shaped region |
| 81 | + // within range of the Nanbot. |
| 82 | + fn in_range(&self, nb: &Nanobot) -> bool { |
| 83 | + let x = (self.x1 - nb.x).max(0) + (nb.x - self.x2).max(0); |
| 84 | + let y = (self.y1 - nb.y).max(0) + (nb.y - self.y2).max(0); |
| 85 | + let z = (self.z1 - nb.z).max(0) + (nb.z - self.z2).max(0); |
| 86 | + x + y + z <= nb.r |
| 87 | + } |
| 88 | + |
| 89 | + /// Find the corner closest to the origin, considering each axis independently. |
| 90 | + fn closest(&self) -> i32 { |
| 91 | + let x = self.x1.abs().min(self.x2.abs()); |
| 92 | + let y = self.y1.abs().min(self.y2.abs()); |
| 93 | + let z = self.z1.abs().min(self.z2.abs()); |
| 94 | + x + y + z |
| 95 | + } |
| 96 | + |
| 97 | + /// All axes are the same same so choose `x` arbitrarily. |
| 98 | + fn size(&self) -> i32 { |
| 99 | + self.x2 - self.x1 + 1 |
| 100 | + } |
| 101 | +} |
| 102 | + |
| 103 | +pub fn parse(input: &str) -> Vec<Nanobot> { |
| 104 | + input.iter_signed().chunk::<4>().map(Nanobot::from).collect() |
| 105 | +} |
| 106 | + |
| 107 | +pub fn part1(input: &[Nanobot]) -> usize { |
| 108 | + let strongest = input.iter().max_by_key(|nb| nb.r).unwrap(); |
| 109 | + input.iter().filter(|nb| strongest.manhattan(nb) <= strongest.r).count() |
| 110 | +} |
| 111 | + |
| 112 | +pub fn part2(input: &[Nanobot]) -> i32 { |
| 113 | + // Start with a single cube that encloses all nanobots. Cubes faces are aligned to powers of 2, |
| 114 | + // for example 0..4, 8..16, -32..0 |
| 115 | + const SIZE: i32 = 1 << 29; |
| 116 | + let mut heap = MinHeap::with_capacity(1_000); |
| 117 | + heap.push((0, 0, 0), Cube::new(-SIZE, SIZE - 1, -SIZE, SIZE - 1, -SIZE, SIZE - 1)); |
| 118 | + |
| 119 | + while let Some((_, cube)) = heap.pop() { |
| 120 | + if cube.size() == 1 { |
| 121 | + return cube.closest(); |
| 122 | + } |
| 123 | + |
| 124 | + for next in cube.split() { |
| 125 | + let in_range = input.iter().filter(|nb| next.in_range(nb)).count(); |
| 126 | + let key = (input.len() - in_range, next.closest(), next.size()); |
| 127 | + heap.push(key, next); |
| 128 | + } |
| 129 | + } |
| 130 | + |
| 131 | + unreachable!() |
| 132 | +} |
0 commit comments