Skip to content

Commit af5f5cc

Browse files
authored
feat: update math scaffold databases
PR-URL: stdlib-js#8321 Reviewed-by: Athan Reines <[email protected]>
1 parent ad4b609 commit af5f5cc

File tree

1 file changed

+303
-4
lines changed
  • lib/node_modules/@stdlib/math/special/data

1 file changed

+303
-4
lines changed

lib/node_modules/@stdlib/math/special/data/unary.json

Lines changed: 303 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -9549,7 +9549,81 @@
95499549
"@stdlib/math/base/special/sinpi": {},
95509550
"@stdlib/math/base/special/spencef": {},
95519551
"@stdlib/math/base/special/spence": {},
9552-
"@stdlib/math/base/special/sqrtf": {},
9552+
"@stdlib/math/base/special/sqrtf": {
9553+
"$schema": "math/[email protected]",
9554+
"base_alias": "sqrt",
9555+
"alias": "sqrtf",
9556+
"pkg_desc": "compute the principal square root of a single-precision floating-point number",
9557+
"desc": "computes the principal square root of a single-precision floating-point number",
9558+
"short_desc": "principal square root",
9559+
"parameters": [
9560+
{
9561+
"name": "x",
9562+
"desc": "input value",
9563+
"type": {
9564+
"javascript": "number",
9565+
"jsdoc": "number",
9566+
"c": "float",
9567+
"dtype": "float32"
9568+
},
9569+
"domain": [
9570+
{
9571+
"min": 0,
9572+
"max": "infinity"
9573+
}
9574+
],
9575+
"rand": {
9576+
"prng": "random/base/uniform",
9577+
"parameters": [
9578+
0,
9579+
100
9580+
]
9581+
},
9582+
"example_values": [
9583+
0,
9584+
0.01,
9585+
0.25,
9586+
0.5,
9587+
1,
9588+
2,
9589+
3,
9590+
4,
9591+
9,
9592+
16,
9593+
25,
9594+
36,
9595+
49,
9596+
64,
9597+
81,
9598+
100,
9599+
0.1,
9600+
10,
9601+
50,
9602+
99.99
9603+
]
9604+
}
9605+
],
9606+
"output_policy": "real_floating_point_and_generic",
9607+
"returns": {
9608+
"desc": "square root",
9609+
"type": {
9610+
"javascript": "number",
9611+
"jsdoc": "number",
9612+
"c": "float",
9613+
"dtype": "float32"
9614+
}
9615+
},
9616+
"keywords": [
9617+
"sqrt",
9618+
"principal",
9619+
"square",
9620+
"root",
9621+
"power"
9622+
],
9623+
"extra_keywords": [
9624+
"math.sqrt"
9625+
]
9626+
},
95539627
"@stdlib/math/base/special/sqrt": {
95549628
"$schema": "math/[email protected]",
95559629
"base_alias": "sqrt",
@@ -9624,9 +9698,234 @@
96249698
"math.sqrt"
96259699
]
96269700
},
9627-
"@stdlib/math/base/special/sqrt1pm1": {},
9628-
"@stdlib/math/base/special/sqrtpif": {},
9629-
"@stdlib/math/base/special/sqrtpi": {},
9701+
"@stdlib/math/base/special/sqrt1pm1": {
9702+
"$schema": "math/[email protected]",
9703+
"base_alias": "sqrt1pm1",
9704+
"alias": "sqrt1pm1",
9705+
"pkg_desc": "compute sqrt(1 + x) - 1",
9706+
"desc": "computes the principal square root of `1+x` minus one",
9707+
"short_desc": "sqrt(1 + x) - 1",
9708+
"parameters": [
9709+
{
9710+
"name": "x",
9711+
"desc": "input value",
9712+
"type": {
9713+
"javascript": "number",
9714+
"jsdoc": "number",
9715+
"c": "double",
9716+
"dtype": "float64"
9717+
},
9718+
"domain": [
9719+
{
9720+
"min": -1,
9721+
"max": "infinity"
9722+
}
9723+
],
9724+
"rand": {
9725+
"prng": "random/base/uniform",
9726+
"parameters": [
9727+
0,
9728+
100
9729+
]
9730+
},
9731+
"example_values": [
9732+
0,
9733+
0.01,
9734+
0.25,
9735+
0.5,
9736+
1,
9737+
2,
9738+
3,
9739+
4,
9740+
9,
9741+
16,
9742+
25,
9743+
36,
9744+
49,
9745+
64,
9746+
81,
9747+
100,
9748+
0.1,
9749+
10,
9750+
50,
9751+
99.99
9752+
]
9753+
}
9754+
],
9755+
"output_policy": "real_floating_point_and_generic",
9756+
"returns": {
9757+
"desc": "square root",
9758+
"type": {
9759+
"javascript": "number",
9760+
"jsdoc": "number",
9761+
"c": "double",
9762+
"dtype": "float64"
9763+
}
9764+
},
9765+
"keywords": [
9766+
"sqrt",
9767+
"sqrt1pm1",
9768+
"principal",
9769+
"square",
9770+
"root",
9771+
"power"
9772+
],
9773+
"extra_keywords": [
9774+
"math.sqrt"
9775+
]
9776+
},
9777+
"@stdlib/math/base/special/sqrtpif": {
9778+
"$schema": "math/[email protected]",
9779+
"base_alias": "sqrtpi",
9780+
"alias": "sqrtpif",
9781+
"pkg_desc": "compute the principal square root of the product of π and a positive single-precision floating-point number",
9782+
"desc": "computes the principal square root of the product of π and a positive single-precision floating-point number",
9783+
"short_desc": "principal square root of the product of π and a positive number",
9784+
"parameters": [
9785+
{
9786+
"name": "x",
9787+
"desc": "input value",
9788+
"type": {
9789+
"javascript": "number",
9790+
"jsdoc": "number",
9791+
"c": "float",
9792+
"dtype": "float32"
9793+
},
9794+
"domain": [
9795+
{
9796+
"min": 0,
9797+
"max": "infinity"
9798+
}
9799+
],
9800+
"rand": {
9801+
"prng": "random/base/uniform",
9802+
"parameters": [
9803+
0,
9804+
100
9805+
]
9806+
},
9807+
"example_values": [
9808+
0,
9809+
0.01,
9810+
0.25,
9811+
0.5,
9812+
1,
9813+
2,
9814+
3,
9815+
4,
9816+
9,
9817+
16,
9818+
25,
9819+
36,
9820+
49,
9821+
64,
9822+
81,
9823+
100,
9824+
0.1,
9825+
10,
9826+
50,
9827+
99.99
9828+
]
9829+
}
9830+
],
9831+
"output_policy": "real_floating_point_and_generic",
9832+
"returns": {
9833+
"desc": "square root",
9834+
"type": {
9835+
"javascript": "number",
9836+
"jsdoc": "number",
9837+
"c": "float",
9838+
"dtype": "float32"
9839+
}
9840+
},
9841+
"keywords": [
9842+
"sqrtpi",
9843+
"principal",
9844+
"square",
9845+
"root",
9846+
"power",
9847+
"pi"
9848+
],
9849+
"extra_keywords": [
9850+
"math.sqrt"
9851+
]
9852+
},
9853+
"@stdlib/math/base/special/sqrtpi": {
9854+
"$schema": "math/[email protected]",
9855+
"base_alias": "sqrtpi",
9856+
"alias": "sqrtpi",
9857+
"pkg_desc": "compute the principal square root of the product of π and a positive double-precision floating-point number",
9858+
"desc": "computes the principal square root of the product of π and a positive double-precision floating-point number",
9859+
"short_desc": "principal square root of the product of π and a positive number",
9860+
"parameters": [
9861+
{
9862+
"name": "x",
9863+
"desc": "input value",
9864+
"type": {
9865+
"javascript": "number",
9866+
"jsdoc": "number",
9867+
"c": "double",
9868+
"dtype": "float64"
9869+
},
9870+
"domain": [
9871+
{
9872+
"min": 0,
9873+
"max": "infinity"
9874+
}
9875+
],
9876+
"rand": {
9877+
"prng": "random/base/uniform",
9878+
"parameters": [
9879+
0,
9880+
100
9881+
]
9882+
},
9883+
"example_values": [
9884+
0,
9885+
0.01,
9886+
0.25,
9887+
0.5,
9888+
1,
9889+
2,
9890+
3,
9891+
4,
9892+
9,
9893+
16,
9894+
25,
9895+
36,
9896+
49,
9897+
64,
9898+
81,
9899+
100,
9900+
0.1,
9901+
10,
9902+
50,
9903+
99.99
9904+
]
9905+
}
9906+
],
9907+
"output_policy": "real_floating_point_and_generic",
9908+
"returns": {
9909+
"desc": "square root",
9910+
"type": {
9911+
"javascript": "number",
9912+
"jsdoc": "number",
9913+
"c": "double",
9914+
"dtype": "float64"
9915+
}
9916+
},
9917+
"keywords": [
9918+
"sqrtpi",
9919+
"principal",
9920+
"square",
9921+
"root",
9922+
"power",
9923+
"pi"
9924+
],
9925+
"extra_keywords": [
9926+
"math.sqrt"
9927+
]
9928+
},
96309929
"@stdlib/math/base/special/tanf": {
96319930
"$schema": "math/[email protected]",
96329931
"base_alias": "tan",

0 commit comments

Comments
 (0)