Skip to content

Commit 9e1fd42

Browse files
committed
New Feature: SNOMED::ICD10CM Mapping Support
- Added feature to allow for conversion of these premade mappings provided by SNOMED into SSSOM format. General updates - cli.py: Reorganized SSSOM_READ_FORMATS: Top half are plain data formats, and bottom half are special-case formats. Both halves of the list are alphabetically sorted. Temp updates - Changed some relative imports to absolute imports, in order to speed up development and make debugging easier. It is possible that this could be a good permanent change too, though.
1 parent bf9c32b commit 9e1fd42

File tree

2 files changed

+165
-4
lines changed

2 files changed

+165
-4
lines changed

sssom/parsers.py

Lines changed: 161 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@
55
import re
66
import typing
77
from collections import Counter
8+
from dateutil import parser as date_parser
89
from pathlib import Path
910
from typing import Any, Callable, Dict, List, Optional, Set, TextIO, Tuple, Union, cast
1011
from urllib.request import urlopen
@@ -24,7 +25,7 @@
2425
add_built_in_prefixes_to_prefix_map,
2526
get_default_metadata,
2627
)
27-
from .sssom_datamodel import Mapping, MappingSet
28+
from .sssom_datamodel import Mapping, MappingSet, MatchTypeEnum
2829
from .sssom_document import MappingSetDocument
2930
from .typehints import Metadata, MetadataType, PrefixMap
3031
from .util import (
@@ -140,6 +141,24 @@ def read_obographs_json(
140141
)
141142

142143

144+
def read_snomed_icd10cm_map_tsv(
145+
file_path: str,
146+
prefix_map: Dict[str, str] = None,
147+
meta: Dict[str, str] = None,
148+
) -> MappingSetDataFrame:
149+
"""Parse special SNOMED ICD10CM mapping file and translates it into a MappingSetDataFrame.
150+
151+
:param file_path: The path to the obographs file
152+
:param prefix_map: an optional prefix map
153+
:param meta: an optional dictionary of metadata elements
154+
:return: A SSSOM MappingSetDataFrame
155+
"""
156+
raise_for_bad_path(file_path)
157+
df = read_pandas(file_path)
158+
df2 = from_snomed_icd10cm_map_tsv(df, prefix_map=prefix_map, meta=meta)
159+
return df2
160+
161+
143162
def _get_prefix_map_and_metadata(
144163
prefix_map: Optional[PrefixMap] = None, meta: Optional[MetadataType] = None
145164
) -> Metadata:
@@ -499,6 +518,144 @@ def from_obographs(
499518
return to_mapping_set_dataframe(mdoc)
500519

501520

521+
def from_snomed_icd10cm_map_tsv(
522+
df: pd.DataFrame,
523+
prefix_map: Optional[PrefixMap] = None,
524+
meta: Optional[MetadataType] = None,
525+
) -> MappingSetDataFrame:
526+
"""Convert a snomed_icd10cm_map dataframe to a MappingSetDataFrame.
527+
528+
:param df: A mappings dataframe
529+
:param prefix_map: A prefix map
530+
:param meta: A metadata dictionary
531+
:return: MappingSetDataFrame
532+
533+
# Field descriptions
534+
# - Taken from: doc_Icd10cmMapReleaseNotes_Current-en-US_US1000124_20210901.pdf
535+
FIELD,DATA_TYPE,PURPOSE,Joe's comments
536+
- id,UUID,A 128 bit unsigned integer, uniquely identifying the map record,
537+
- effectiveTime,Time,Specifies the inclusive date at which this change becomes effective.,
538+
- active,Boolean,Specifies whether the member’s state was active (=1) or inactive (=0) from the nominal release date
539+
specified by the effectiveTime field.,
540+
- moduleId,SctId,Identifies the member version’s module. Set to a child of 900000000000443000|Module| within the
541+
metadata hierarchy.,The only value in the entire set is '5991000124107', which has label 'SNOMED CT to ICD-10-CM
542+
rule-based mapping module' (
543+
https://www.findacode.com/snomed/5991000124107--snomed-ct-to-icd-10-cm-rule-based-mapping-module.html).
544+
- refSetId,SctId,Set to one of the children of the |Complex map type| concept in the metadata hierarchy.,The only
545+
value in the entire set is '5991000124107', which has label 'ICD-10-CM complex map reference set' (
546+
https://www.findacode.com/snomed/6011000124106--icd-10-cm-complex-map-reference-set.html).
547+
- referencedComponentId,SctId,The SNOMED CT source concept ID that is the subject of the map record.,
548+
- mapGroup,Integer,An integer identifying a grouping of complex map records which will designate one map target at
549+
the time of map rule evaluation. Source concepts that require two map targets for classification will have two sets
550+
of map groups.,
551+
- mapPriority,Integer,Within a map group, the mapPriority specifies the order in which complex map records should be
552+
evaluated to determine the correct map target.,
553+
- mapRule,String,A machine-readable rule, (evaluating to either ‘true’ or ‘false’ at run-time) that indicates
554+
whether this map record should be selected within its map group.,
555+
- mapAdvice,String,Human-readable advice that may be employed by the software vendor to give an end-user advice on
556+
selection of the appropriate target code. This includes a) a summary statement of the map rule logic, b) a statement
557+
of any limitations of the map record and c) additional classification guidance for the coding professional.,
558+
- mapTarget,String,The target ICD-10 classification code of the map record.,
559+
- correlationId,SctId,A child of |Map correlation value| in the metadata hierarchy, identifying the correlation
560+
between the SNOMED CT concept and the target code.,
561+
- mapCategoryId,SctId,Identifies the SNOMED CT concept in the metadata hierarchy which is the MapCategory for the
562+
associated map record. This is a subtype of 447634004 |ICD-10 Map Category value|.,
563+
"""
564+
# https://www.findacode.com/snomed/447561005--snomed-ct-source-code-to-target-map-correlation-not-specified.html
565+
match_type_snomed_unspecified_id = 447561005
566+
prefix_map = _ensure_prefix_map(prefix_map)
567+
ms = _init_mapping_set(meta)
568+
569+
mlist: List[Mapping] = []
570+
for _, row in df.iterrows():
571+
mdict = {
572+
'subject_id': f'SNOMED:{row["referencedComponentId"]}',
573+
'subject_label': row['referencedComponentName'],
574+
575+
# 'predicate_id': 'skos:exactMatch',
576+
# - mapCategoryId: can use for mapping predicate? Or is correlationId more suitable?
577+
# or is there a SKOS predicate I can map to in case where predicate is unknown? I think most of these
578+
# mappings are attempts at exact matches, but I can't be sure (at least not without using these fields
579+
# to determine: mapGroup, mapPriority, mapRule, mapAdvice).
580+
# mapCategoryId,mapCategoryName: Only these in set: 447637006 "MAP SOURCE CONCEPT IS PROPERLY CLASSIFIED",
581+
# 447638001 "MAP SOURCE CONCEPT CANNOT BE CLASSIFIED WITH AVAILABLE DATA",
582+
# 447639009 "MAP OF SOURCE CONCEPT IS CONTEXT DEPENDENT"
583+
# 'predicate_modifier': '???',
584+
# Description: Modifier for negating the prediate. See https://github.com/mapping-commons/sssom/issues/40
585+
# Range: PredicateModifierEnum: (joe: only lists 'Not' as an option)
586+
# Example: Not Negates the predicate, see documentation of predicate_modifier_enum
587+
# - predicate_id <- mapAdvice?
588+
# - predicate_modifier <- mapAdvice?
589+
# mapAdvice: Pipe-delimited qualifiers. Ex:
590+
# "ALWAYS Q71.30 | CONSIDER LATERALITY SPECIFICATION"
591+
# "IF LISSENCEPHALY TYPE 3 FAMILIAL FETAL AKINESIA SEQUENCE SYNDROME CHOOSE Q04.3 | MAP OF SOURCE CONCEPT
592+
# IS CONTEXT DEPENDENT"
593+
# "MAP SOURCE CONCEPT CANNOT BE CLASSIFIED WITH AVAILABLE DATA"
594+
'predicate_id': f'SNOMED:{row["mapCategoryId"]}',
595+
'predicate_label': row['mapCategoryName'],
596+
597+
'object_id': f'ICD10CM:{row["mapTarget"]}',
598+
'object_label': row['mapTargetName'],
599+
600+
# match_type <- mapRule?
601+
# ex: TRUE: when "ALWAYS <code>" is in pipe-delimited list in mapAdvice, this always shows TRUE. Does this
602+
# mean I could use skos:exactMatch in these cases?
603+
# match_type <- correlationId?: This may look redundant, but I want to be explicit. In officially downloaded
604+
# SNOMED mappings, all of them had correlationId of 447561005, which also happens to be 'unspecified'.
605+
# If correlationId is indeed more appropriate for predicate_id, then I don't think there is a representative
606+
# field for 'match_type'.
607+
'match_type': MatchTypeEnum('Unspecified') if row['correlationId'] == match_type_snomed_unspecified_id \
608+
else MatchTypeEnum('Unspecified'),
609+
610+
'mapping_date': date_parser.parse(str(row['effectiveTime'])).date(),
611+
'other': '|'.join([f'{k}={str(row[k])}' for k in [
612+
'id',
613+
'active',
614+
'moduleId',
615+
'refsetId',
616+
'mapGroup',
617+
'mapPriority',
618+
'mapRule',
619+
'mapAdvice',
620+
]]),
621+
622+
# More fields (https://mapping-commons.github.io/sssom/Mapping/):
623+
# - subject_category: absent
624+
# - author_id: can this be "SNOMED"?
625+
# - author_label: can this be "SNOMED"?
626+
# - reviewer_id: can this be "SNOMED"?
627+
# - reviewer_label: can this be "SNOMED"?
628+
# - creator_id: can this be "SNOMED"?
629+
# - creator_label: can this be "SNOMED"?
630+
# - license: Is this something that can be determined?
631+
# - subject_source: URL of some official page for SNOMED version used?
632+
# - subject_source_version: Is this knowable?
633+
# - objectCategory <= mapRule?
634+
# mapRule: ex: TRUE: when "ALWAYS <code>" is in pipe-delimited list in mapAdvice, this always shows TRUE.
635+
# Does this mean I could use skos:exactMatch in these cases?
636+
# object_category:
637+
# objectCategory:
638+
# Description: The conceptual category to which the subject belongs to. This can be a string denoting
639+
# the category or a term from a controlled vocabulary.
640+
# Example: UBERON:0001062 (The CURIE of the Uberon term for "anatomical entity".)
641+
# - object_source: URL of some official page for ICD10CM version used?
642+
# - object_source_version: would this be "10CM" as in "ICD10CM"? Or something else? Or nothing?
643+
# - mapping_provider: can this be "SNOMED"?
644+
# - mapping_cardinality: Could I determine 1:1 or 1:many or many:1 based on:
645+
# mapGroup, mapPriority, mapRule, mapAdvice?
646+
# - match_term_type: What is this?
647+
# - see_also: Should this be a URL to the SNOMED term?
648+
# - comment: Description: Free text field containing either curator notes or text generated by tool providing
649+
# additional informative information.
650+
}
651+
mlist.append(_prepare_mapping(Mapping(**mdict)))
652+
653+
ms.mappings = mlist
654+
_set_metadata_in_mapping_set(mapping_set=ms, metadata=meta)
655+
doc = MappingSetDocument(mapping_set=ms, prefix_map=prefix_map)
656+
return to_mapping_set_dataframe(doc)
657+
658+
502659
# All from_* take as an input a python object (data frame, json, etc) and return a MappingSetDataFrame
503660
# All read_* take as an input a a file handle and return a MappingSetDataFrame (usually wrapping a from_* method)
504661

@@ -523,6 +680,9 @@ def get_parsing_function(input_format: Optional[str], filename: str) -> Callable
523680
return read_alignment_xml
524681
elif input_format == "obographs-json":
525682
return read_obographs_json
683+
elif input_format == "snomed-icd10cm-map-tsv":
684+
return read_snomed_icd10cm_map_tsv
685+
526686
else:
527687
raise Exception(f"Unknown input format: {input_format}")
528688

sssom/util.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -43,12 +43,13 @@
4343
PREFIX_MAP_KEY = "curie_map"
4444

4545
SSSOM_READ_FORMATS = [
46-
"tsv",
47-
"rdf",
46+
"json",
4847
"owl",
48+
"rdf",
49+
"tsv",
4950
"alignment-api-xml",
5051
"obographs-json",
51-
"json",
52+
"snomed-icd10cm-map-tsv"
5253
]
5354
SSSOM_EXPORT_FORMATS = ["tsv", "rdf", "owl", "json"]
5455

0 commit comments

Comments
 (0)