Skip to content

Commit 22d1694

Browse files
authored
Merge pull request #509 from marklogic/feature/merge-main
MLE-12345 Merging main doc changes into develop
2 parents 228c4d0 + 27ccb23 commit 22d1694

File tree

2 files changed

+9
-5
lines changed

2 files changed

+9
-5
lines changed

docs/getting-started.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -32,6 +32,10 @@ application that can be deployed to your own instance of MarkLogic server. The a
3232
server and that the value of `mlRestPort` is a port available for a new MarkLogic app server to use.
3333
5. Run `./gradlew -i mlDeploy` to deploy the example application.
3434

35+
**Note** - if you are deploying to a MarkLogic instance in Progress Data Cloud (PDC), please see
36+
[the ml-gradle documentation](https://github.com/marklogic/ml-gradle/wiki/Progress-Data-Cloud-support) for support on
37+
configuring the properties in `gradle.properties` for your PDC tenancy.
38+
3539
The example application consists of a REST API app server on port 8004 in your MarkLogic installation.
3640
The application also includes a "flux-example-user" MarkLogic user that has the necessary MarkLogic roles and
3741
privileges for running the examples in this guide. Finally, the application includes a

docs/import/embedder/embedding-query.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -23,8 +23,8 @@ on the embeddings.
2323
## Setup
2424

2525
If you would like to try these examples yourself, you'll need access to an instance of
26-
[MarkLogic 12.0 EA1](https://docs.marklogic.com/12.0/guide/release-notes/en/release-notes.html) or later. Version
27-
12.0 EA1 is the first version of MarkLogic to support vector queries.
26+
[MarkLogic 12.0](https://docs.progress.com/bundle/marklogic-server-whats-new-12/page/topics/release-notes.html) or later. Version
27+
12.0 is the first version of MarkLogic to support vector queries.
2828

2929
Additionally, you'll need to deploy the Getting Started example application to the MarkLogic instance per the
3030
instructions in the [Getting Started guide](../../getting-started.md).
@@ -128,7 +128,7 @@ op.fromSearchDocs(cts.andQuery([
128128
.orderBy("score")
129129
.limit(20)
130130
.bind(op.as("chunkEmbedding", op.vec.vector(op.xpath("doc", "/chunks/embedding"))))
131-
.bind(op.as("similarity", op.vec.cosineSimilarity(op.col("chunkEmbedding"), op.vec.vector(vector))))
131+
.bind(op.as("similarity", op.vec.cosine(op.col("chunkEmbedding"), op.vec.vector(vector))))
132132
.orderBy(op.desc("similarity"))
133133
.limit(10)
134134
.bind(op.as("chunkText", op.xpath("doc", "/chunks/text")))
@@ -167,7 +167,7 @@ can greatly increase the quality of responses.
167167

168168
## Querying with a view
169169

170-
As shown in the [MarkLogic documentation for vector queries](https://docs.marklogic.com/12.0/guide/release-notes/en/new-features-in-marklogic-12-0-ea1/native-vector-support.html),
170+
As shown in the [MarkLogic documentation for vector queries](https://docs.progress.com/bundle/marklogic-server-get-started-optic-12/page/topics/building-vector-queries.html),
171171
you may instead wish to project chunks as rows via a [MarkLogic TDE template](https://docs.marklogic.com/guide/app-dev/TDE).
172172
You can then use an Optic query to first select documents via a search, and then join chunk rows to access their embeddings.
173173

@@ -290,7 +290,7 @@ op.fromSearchDocs(cts.andQuery([
290290
op.fromView("example", "chunks", "", op.fragmentIdCol("chunkFragmentId")),
291291
op.on(op.fragmentIdCol("fragmentId"), op.fragmentIdCol("chunkFragmentId"))
292292
)
293-
.bind(op.as("similarity", op.vec.cosineSimilarity(op.col("embedding"), op.vec.vector(vector))))
293+
.bind(op.as("similarity", op.vec.cosine(op.col("embedding"), op.vec.vector(vector))))
294294
.orderBy(op.desc("similarity"))
295295
.limit(10)
296296
.select(["uri", "text"])

0 commit comments

Comments
 (0)