Skip to content

Commit 70e13b1

Browse files
committed
updated references, fixes #157
[ci skip]
1 parent 96ebb39 commit 70e13b1

8 files changed

+63
-31
lines changed

notebooks/00-pentapeptide-showcase.ipynb

Lines changed: 12 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1722,27 +1722,32 @@
17221722
"5. [PCCA and TPT analysis 📓](05-pcca-tpt.ipynb)\n",
17231723
"6. [Hidden Markov state models (HMMs) 📓](06-hidden-markov-state-models.ipynb).\n",
17241724
"7. [Expectations and observables 📓](07-expectations-and-observables.ipynb)\n",
1725-
"8. [Common problems & bad data situations 📓](08-common-problems.ipynb)\n",
1726-
"\n",
1725+
"8. [Common problems & bad data situations 📓](08-common-problems.ipynb)"
1726+
]
1727+
},
1728+
{
1729+
"cell_type": "markdown",
1730+
"metadata": {},
1731+
"source": [
17271732
"## References\n",
17281733
"\n",
17291734
"<a id=\"cite-gmrq\"/><sup><a href=#ref-1>[^]</a></sup>Robert T. McGibbon and Vijay S. Pande. 2015. _Variational cross-validation of slow dynamical modes in molecular kinetics_. [URL](https://doi.org/10.1063/1.4916292)\n",
17301735
"\n",
1731-
"<a id=\"cite-vamp-preprint\"/><sup><a href=#ref-2>[^]</a></sup>Wu, H. and No&eacute;, F.. 2017. _Variational approach for learning Markov processes from time series data_.\n",
1736+
"<a id=\"cite-vamp-preprint\"/><sup><a href=#ref-2>[^]</a></sup>Wu, H. and Noé, F.. 2017. _Variational approach for learning Markov processes from time series data_. [URL](https://arxiv.org/pdf/1707.04659.pdf)\n",
17321737
"\n",
1733-
"<a id=\"cite-vampnet\"/><sup><a href=#ref-3>[^]</a></sup>Mardt, A. and Pasquali, L. and Wu, H. and No&eacute;, F.. 2017. _VAMPnets: Deep learning of molecular kinetics_.\n",
1738+
"<a id=\"cite-vampnet\"/><sup><a href=#ref-3>[^]</a></sup>Andreas Mardt and Luca Pasquali and Hao Wu and Frank Noé. 2018. _VAMPnets for deep learning of molecular kinetics_. [URL](https://doi.org/10.1038/s41467-017-02388-1)\n",
17341739
"\n",
17351740
"<a id=\"cite-tica2\"/><sup><a href=#ref-4>[^]</a></sup>Molgedey, L. and Schuster, H. G.. 1994. _Separation of a mixture of independent signals using time delayed correlations_. [URL](http://dx.doi.org/10.1103/PhysRevLett.72.3634)\n",
17361741
"\n",
17371742
"<a id=\"cite-tica\"/><sup><a href=#ref-5>[^]</a></sup>Guillermo Pérez-Hernández and Fabian Paul and Toni Giorgino and Gianni De Fabritiis and Frank Noé. 2013. _Identification of slow molecular order parameters for Markov model construction_. [URL](https://doi.org/10.1063/1.4811489)\n",
17381743
"\n",
1739-
"<a id=\"cite-msm-jhp\"/><sup><a href=#ref-6>[^]</a></sup>Prinz, Jan-Hendrik and Wu, Hao and Sarich, Marco and Keller, Bettina and Senne, Martin and Held, Martin and Chodera, John D. and Sch&uuml;tte, Christof and No&eacute;, Frank. 2011. _Markov models of molecular kinetics: Generation and validation_. [URL](http://scitation.aip.org/content/aip/journal/jcp/134/17/10.1063/1.3565032)\n",
1744+
"<a id=\"cite-msm-jhp\"/><sup><a href=#ref-6>[^]</a></sup>Prinz, Jan-Hendrik and Wu, Hao and Sarich, Marco and Keller, Bettina and Senne, Martin and Held, Martin and Chodera, John D. and Schütte, Christof and Noé, Frank. 2011. _Markov models of molecular kinetics: Generation and validation_. [URL](http://scitation.aip.org/content/aip/journal/jcp/134/17/10.1063/1.3565032)\n",
17401745
"\n",
17411746
"<a id=\"cite-swope-its\"/><sup><a href=#ref-7>[^]</a></sup>William C. Swope and Jed W. Pitera and Frank Suits. 2004. _Describing Protein Folding Kinetics by Molecular Dynamics Simulations. 1. Theory\\textdagger_. [URL](https://doi.org/10.1021/jp037421y)\n",
17421747
"\n",
17431748
"<a id=\"cite-pcca_plus_plus\"/><sup><a href=#ref-8>[^]</a></sup>Susanna Röblitz and Marcus Weber. 2013. _Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification_. [URL](https://doi.org/10.1007/s11634-013-0134-6)\n",
17441749
"\n",
1745-
"<a id=\"cite-mdtraj\"/><sup><a href=#ref-9>[^]</a></sup>McGibbon, Robert T. and Beauchamp, Kyle A. and Harrigan, Matthew P. and Klein, Christoph and Swails, Jason M. and Hern&aacute;ndez, Carlos X. and Schwantes, Christian R. and Wang, Lee-Ping and Lane, Thomas J. and Pande, Vijay S.. 2015. _MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories_.\n",
1750+
"<a id=\"cite-mdtraj\"/><sup><a href=#ref-9>[^]</a></sup>McGibbon, Robert T. and Beauchamp, Kyle A. and Harrigan, Matthew P. and Klein, Christoph and Swails, Jason M. and Hernández, Carlos X. and Schwantes, Christian R. and Wang, Lee-Ping and Lane, Thomas J. and Pande, Vijay S.. 2015. _MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories_.\n",
17461751
"\n",
17471752
"<a id=\"cite-simon-amm\"/><sup><a href=#ref-10>[^]</a></sup>Simon Olsson and Hao Wu and Fabian Paul and Cecilia Clementi and Frank Noé. 2017. _Combining experimental and simulation data of molecular processes via augmented Markov models_. [URL](https://doi.org/10.1073/pnas.1704803114)\n",
17481753
"\n",
@@ -1753,7 +1758,6 @@
17531758
"<a id=\"cite-noe-dy-neut-scatt\"/><sup><a href=#ref-13>[^]</a></sup>Benjamin Lindner and Zheng Yi and Jan-Hendrik Prinz and Jeremy C. Smith and Frank Noé. 2013. _Dynamic neutron scattering from conformational dynamics. I. Theory and Markov models_. [URL](https://doi.org/10.1063/1.4824070)\n",
17541759
"\n",
17551760
"<a id=\"cite-hmm-baum-welch-alg\"/><sup><a href=#ref-14>[^]</a></sup>Leonard E. Baum and Ted Petrie and George Soules and Norman Weiss. 1970. _A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains_. [URL](http://www.jstor.org/stable/2239727)\n",
1756-
"\n",
17571761
"\n"
17581762
]
17591763
}
@@ -1774,7 +1778,7 @@
17741778
"name": "python",
17751779
"nbconvert_exporter": "python",
17761780
"pygments_lexer": "ipython3",
1777-
"version": "3.6.5"
1781+
"version": "3.6.6"
17781782
},
17791783
"toc": {
17801784
"base_numbering": 1,

notebooks/01-data-io-and-featurization.ipynb

Lines changed: 8 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1056,11 +1056,16 @@
10561056
"- `pyemma.coordinates.vamp().score()` to score the quality of the features,\n",
10571057
"- `pyemma.plots.plot_feature_histograms()` to show the distributions of all loaded features,\n",
10581058
"- `pyemma.plots.plot_density()` to visualize the sample density, and\n",
1059-
"- `pyemma.plots.plot_free_energy()` to visualize the free energy surface of two selected features.\n",
1060-
"\n",
1059+
"- `pyemma.plots.plot_free_energy()` to visualize the free energy surface of two selected features."
1060+
]
1061+
},
1062+
{
1063+
"cell_type": "markdown",
1064+
"metadata": {},
1065+
"source": [
10611066
"## References\n",
10621067
"\n",
1063-
"<a id=\"cite-vamp-preprint\"/><sup><a href=#ref-1>[^]</a></sup>Wu, H. and No&eacute;, F.. 2017. _Variational approach for learning Markov processes from time series data_.\n",
1068+
"<a id=\"cite-vamp-preprint\"/><sup><a href=#ref-1>[^]</a></sup>Wu, H. and Noé, F.. 2017. _Variational approach for learning Markov processes from time series data_. [URL](https://arxiv.org/pdf/1707.04659.pdf)\n",
10641069
"\n"
10651070
]
10661071
}

notebooks/02-dimension-reduction-and-discretization.ipynb

Lines changed: 10 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1230,15 +1230,22 @@
12301230
"- `pyemma.coordinates.tica()` to perform a time-lagged independent component analysis, and\n",
12311231
"- `pyemma.coordinates.vamp()` to analyze the quality of some feature spaces, perform dimension reduction, and\n",
12321232
"- `pyemma.coordinates.cluster_kmeans()` to perform a $k$-means clustering, and\n",
1233-
"- `pyemma.coordinates.cluster_regspace()` to perform a regspace clustering.\n",
1234-
"\n",
1233+
"- `pyemma.coordinates.cluster_regspace()` to perform a regspace clustering."
1234+
]
1235+
},
1236+
{
1237+
"cell_type": "markdown",
1238+
"metadata": {},
1239+
"source": [
12351240
"## References\n",
12361241
"\n",
12371242
"<a id=\"cite-tica2\"/><sup><a href=#ref-1>[^]</a></sup>Molgedey, L. and Schuster, H. G.. 1994. _Separation of a mixture of independent signals using time delayed correlations_. [URL](http://dx.doi.org/10.1103/PhysRevLett.72.3634)\n",
12381243
"\n",
12391244
"<a id=\"cite-tica\"/><sup><a href=#ref-2>[^]</a></sup>Guillermo Pérez-Hernández and Fabian Paul and Toni Giorgino and Gianni De Fabritiis and Frank Noé. 2013. _Identification of slow molecular order parameters for Markov model construction_. [URL](https://doi.org/10.1063/1.4811489)\n",
12401245
"\n",
1241-
"<a id=\"cite-vamp-preprint\"/><sup><a href=#ref-3>[^]</a></sup>Wu, H. and No&eacute;, F.. 2017. _Variational approach for learning Markov processes from time series data_.\n",
1246+
"<a id=\"cite-vamp-preprint\"/><sup><a href=#ref-3>[^]</a></sup>Wu, H. and Noé, F.. 2017. _Variational approach for learning Markov processes from time series data_. [URL](https://arxiv.org/pdf/1707.04659.pdf)\n",
1247+
"\n",
1248+
"<a id=\"cite-aggarwal_surprising_2001\"/><sup><a href=#ref-4>[^]</a></sup>Aggarwal, Charu C. and Hinneburg, Alexander and Keim, Daniel A.. 2001. _On the Surprising Behavior of Distance Metrics in High Dimensional Space_.\n",
12421249
"\n"
12431250
]
12441251
}

notebooks/03-msm-estimation-and-validation.ipynb

Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -587,16 +587,20 @@
587587
"- `pyemma.msm.bayesian_markov_model()` to estimate a Bayesian MSM,\n",
588588
"- the `timescales()` method of an estimated MSM object to access its implied timescales,\n",
589589
"- the `cktest()` method of an estimated MSM object to perform a Chapman-Kolmogorow test, and\n",
590-
"- `pyemma.plots.plot_cktest()` to visualize the latter.\n",
591-
"\n",
590+
"- `pyemma.plots.plot_cktest()` to visualize the latter."
591+
]
592+
},
593+
{
594+
"cell_type": "markdown",
595+
"metadata": {},
596+
"source": [
592597
"## References\n",
593598
"\n",
594-
"<a id=\"cite-msm-jhp\"/><sup><a href=#ref-1>[^]</a></sup>Prinz, Jan-Hendrik and Wu, Hao and Sarich, Marco and Keller, Bettina and Senne, Martin and Held, Martin and Chodera, John D. and Sch&uuml;tte, Christof and No&eacute;, Frank. 2011. _Markov models of molecular kinetics: Generation and validation_. [URL](http://scitation.aip.org/content/aip/journal/jcp/134/17/10.1063/1.3565032)\n",
599+
"<a id=\"cite-msm-jhp\"/><sup><a href=#ref-1>[^]</a></sup>Prinz, Jan-Hendrik and Wu, Hao and Sarich, Marco and Keller, Bettina and Senne, Martin and Held, Martin and Chodera, John D. and Schütte, Christof and Noé, Frank. 2011. _Markov models of molecular kinetics: Generation and validation_. [URL](http://scitation.aip.org/content/aip/journal/jcp/134/17/10.1063/1.3565032)\n",
595600
"\n",
596601
"<a id=\"cite-msm-book\"/><sup><a href=#ref-2>[^]</a></sup>Gregory R. Bowman and Vijay S. Pande and Frank Noé. 2014. _An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation_. [URL](https://doi.org/10.1007%2F978-94-007-7606-7)\n",
597602
"\n",
598603
"<a id=\"cite-msm-brooke\"/><sup><a href=#ref-3>[^]</a></sup>Brooke E. Husic and Vijay S. Pande. 2018. _Markov State Models: From an Art to a Science_.\n",
599-
"\n",
600604
"\n"
601605
]
602606
}

notebooks/04-msm-analysis.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -841,7 +841,7 @@
841841
"name": "python",
842842
"nbconvert_exporter": "python",
843843
"pygments_lexer": "ipython3",
844-
"version": "3.6.5"
844+
"version": "3.6.6"
845845
},
846846
"toc": {
847847
"base_numbering": 1,

notebooks/05-pcca-tpt.ipynb

Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -959,16 +959,20 @@
959959
"\n",
960960
"For visualizing MSMs or kinetic networks we used\n",
961961
"- `pyemma.plots.plot_density()`, `pyemma.plots.plot_contour()` and\n",
962-
"- `pyemma.plots.plot_network()`.\n",
963-
"\n",
962+
"- `pyemma.plots.plot_network()`."
963+
]
964+
},
965+
{
966+
"cell_type": "markdown",
967+
"metadata": {},
968+
"source": [
964969
"## References\n",
965970
"\n",
966971
"<a id=\"cite-pcca_plus_plus\"/><sup><a href=#ref-1>[^]</a><a href=#ref-4>[^]</a></sup>Susanna Röblitz and Marcus Weber. 2013. _Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification_. [URL](https://doi.org/10.1007/s11634-013-0134-6)\n",
967972
"\n",
968973
"<a id=\"cite-weinan-tpt\"/><sup><a href=#ref-2>[^]</a></sup>Weinan E. and Eric Vanden-Eijnden. 2006. _Towards a Theory of Transition Paths_. [URL](https://doi.org/10.1007/s10955-005-9003-9)\n",
969974
"\n",
970975
"<a id=\"cite-metzner-msm-tpt\"/><sup><a href=#ref-3>[^]</a></sup>Philipp Metzner and Christof Schütte and Eric Vanden-Eijnden. 2009. _Transition Path Theory for Markov Jump Processes_. [URL](https://doi.org/10.1137/070699500)\n",
971-
"\n",
972976
"\n"
973977
]
974978
}
@@ -989,7 +993,7 @@
989993
"name": "python",
990994
"nbconvert_exporter": "python",
991995
"pygments_lexer": "ipython3",
992-
"version": "3.6.5"
996+
"version": "3.6.6"
993997
},
994998
"toc": {
995999
"base_numbering": 1,

notebooks/06-expectations-and-observables.ipynb

Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -930,8 +930,13 @@
930930
"* `sample_conf()` computes the confidence interval of a property over the sampled MSMs/HMMs in a Bayesian model.\n",
931931
"* `sample_std()` computes the standard deviation of a property over the sampled MSMs/HMMs in a Bayesian model.\n",
932932
"\n",
933-
"Finally, we have shown how to use these methods together with precomputed observables.\n",
934-
"\n",
933+
"Finally, we have shown how to use these methods together with precomputed observables."
934+
]
935+
},
936+
{
937+
"cell_type": "markdown",
938+
"metadata": {},
939+
"source": [
935940
"## References\n",
936941
"\n",
937942
"<a id=\"cite-simon-amm\"/><sup><a href=#ref-1>[^]</a><a href=#ref-5>[^]</a></sup>Simon Olsson and Hao Wu and Fabian Paul and Cecilia Clementi and Frank Noé. 2017. _Combining experimental and simulation data of molecular processes via augmented Markov models_. [URL](https://doi.org/10.1073/pnas.1704803114)\n",
@@ -941,7 +946,6 @@
941946
"<a id=\"cite-simon-mech-mod-nmr\"/><sup><a href=#ref-3>[^]</a></sup>Simon Olsson and Frank Noé. 2016. _Mechanistic Models of Chemical Exchange Induced Relaxation in Protein NMR_. [URL](https://doi.org/10.1021/jacs.6b09460)\n",
942947
"\n",
943948
"<a id=\"cite-noe-dy-neut-scatt\"/><sup><a href=#ref-4>[^]</a></sup>Benjamin Lindner and Zheng Yi and Jan-Hendrik Prinz and Jeremy C. Smith and Frank Noé. 2013. _Dynamic neutron scattering from conformational dynamics. I. Theory and Markov models_. [URL](https://doi.org/10.1063/1.4824070)\n",
944-
"\n",
945949
"\n"
946950
]
947951
}
@@ -962,7 +966,7 @@
962966
"name": "python",
963967
"nbconvert_exporter": "python",
964968
"pygments_lexer": "ipython3",
965-
"version": "3.6.5"
969+
"version": "3.6.6"
966970
},
967971
"toc": {
968972
"base_numbering": 1,

notebooks/07-hidden-markov-state-models.ipynb

Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1219,16 +1219,20 @@
12191219
"- `pyemma.msm.bayesian_hidden_markov_model()` to estimate a Bayesian HMM, \n",
12201220
"- the `metastable_assignments` attribute of an HMM object to access the metastable membership of discrete states, \n",
12211221
"- the `hidden_state_probabilities` attribute to assess probabilities of hidden states over time, and\n",
1222-
"- the `hidden_state_trajectories` attribute that extracts the most likely trajectory in hidden state space.\n",
1223-
"\n",
1222+
"- the `hidden_state_trajectories` attribute that extracts the most likely trajectory in hidden state space."
1223+
]
1224+
},
1225+
{
1226+
"cell_type": "markdown",
1227+
"metadata": {},
1228+
"source": [
12241229
"## References\n",
12251230
"\n",
12261231
"<a id=\"cite-hmm-baum-welch-alg\"/><sup><a href=#ref-1>[^]</a></sup>Leonard E. Baum and Ted Petrie and George Soules and Norman Weiss. 1970. _A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains_. [URL](http://www.jstor.org/stable/2239727)\n",
12271232
"\n",
12281233
"<a id=\"cite-noe-proj-hid-msm\"/><sup><a href=#ref-2>[^]</a></sup>Frank Noé and Hao Wu and Jan-Hendrik Prinz and Nuria Plattner. 2013. _Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules_. [URL](https://doi.org/10.1063/1.4828816)\n",
12291234
"\n",
12301235
"<a id=\"cite-hmm-tutorial\"/><sup><a href=#ref-3>[^]</a></sup>L.R. Rabiner. 1989. _A tutorial on hidden Markov models and selected applications in speech recognition_. [URL](https://doi.org/10.1109/5.18626)\n",
1231-
"\n",
12321236
"\n"
12331237
]
12341238
}
@@ -1249,7 +1253,7 @@
12491253
"name": "python",
12501254
"nbconvert_exporter": "python",
12511255
"pygments_lexer": "ipython3",
1252-
"version": "3.6.5"
1256+
"version": "3.6.6"
12531257
},
12541258
"toc": {
12551259
"base_numbering": 1,

0 commit comments

Comments
 (0)