|
1722 | 1722 | "5. [PCCA and TPT analysis 📓](05-pcca-tpt.ipynb)\n", |
1723 | 1723 | "6. [Hidden Markov state models (HMMs) 📓](06-hidden-markov-state-models.ipynb).\n", |
1724 | 1724 | "7. [Expectations and observables 📓](07-expectations-and-observables.ipynb)\n", |
1725 | | - "8. [Common problems & bad data situations 📓](08-common-problems.ipynb)\n", |
1726 | | - "\n", |
| 1725 | + "8. [Common problems & bad data situations 📓](08-common-problems.ipynb)" |
| 1726 | + ] |
| 1727 | + }, |
| 1728 | + { |
| 1729 | + "cell_type": "markdown", |
| 1730 | + "metadata": {}, |
| 1731 | + "source": [ |
1727 | 1732 | "## References\n", |
1728 | 1733 | "\n", |
1729 | 1734 | "<a id=\"cite-gmrq\"/><sup><a href=#ref-1>[^]</a></sup>Robert T. McGibbon and Vijay S. Pande. 2015. _Variational cross-validation of slow dynamical modes in molecular kinetics_. [URL](https://doi.org/10.1063/1.4916292)\n", |
1730 | 1735 | "\n", |
1731 | | - "<a id=\"cite-vamp-preprint\"/><sup><a href=#ref-2>[^]</a></sup>Wu, H. and Noé, F.. 2017. _Variational approach for learning Markov processes from time series data_.\n", |
| 1736 | + "<a id=\"cite-vamp-preprint\"/><sup><a href=#ref-2>[^]</a></sup>Wu, H. and Noé, F.. 2017. _Variational approach for learning Markov processes from time series data_. [URL](https://arxiv.org/pdf/1707.04659.pdf)\n", |
1732 | 1737 | "\n", |
1733 | | - "<a id=\"cite-vampnet\"/><sup><a href=#ref-3>[^]</a></sup>Mardt, A. and Pasquali, L. and Wu, H. and Noé, F.. 2017. _VAMPnets: Deep learning of molecular kinetics_.\n", |
| 1738 | + "<a id=\"cite-vampnet\"/><sup><a href=#ref-3>[^]</a></sup>Andreas Mardt and Luca Pasquali and Hao Wu and Frank Noé. 2018. _VAMPnets for deep learning of molecular kinetics_. [URL](https://doi.org/10.1038/s41467-017-02388-1)\n", |
1734 | 1739 | "\n", |
1735 | 1740 | "<a id=\"cite-tica2\"/><sup><a href=#ref-4>[^]</a></sup>Molgedey, L. and Schuster, H. G.. 1994. _Separation of a mixture of independent signals using time delayed correlations_. [URL](http://dx.doi.org/10.1103/PhysRevLett.72.3634)\n", |
1736 | 1741 | "\n", |
1737 | 1742 | "<a id=\"cite-tica\"/><sup><a href=#ref-5>[^]</a></sup>Guillermo Pérez-Hernández and Fabian Paul and Toni Giorgino and Gianni De Fabritiis and Frank Noé. 2013. _Identification of slow molecular order parameters for Markov model construction_. [URL](https://doi.org/10.1063/1.4811489)\n", |
1738 | 1743 | "\n", |
1739 | | - "<a id=\"cite-msm-jhp\"/><sup><a href=#ref-6>[^]</a></sup>Prinz, Jan-Hendrik and Wu, Hao and Sarich, Marco and Keller, Bettina and Senne, Martin and Held, Martin and Chodera, John D. and Schütte, Christof and Noé, Frank. 2011. _Markov models of molecular kinetics: Generation and validation_. [URL](http://scitation.aip.org/content/aip/journal/jcp/134/17/10.1063/1.3565032)\n", |
| 1744 | + "<a id=\"cite-msm-jhp\"/><sup><a href=#ref-6>[^]</a></sup>Prinz, Jan-Hendrik and Wu, Hao and Sarich, Marco and Keller, Bettina and Senne, Martin and Held, Martin and Chodera, John D. and Schütte, Christof and Noé, Frank. 2011. _Markov models of molecular kinetics: Generation and validation_. [URL](http://scitation.aip.org/content/aip/journal/jcp/134/17/10.1063/1.3565032)\n", |
1740 | 1745 | "\n", |
1741 | 1746 | "<a id=\"cite-swope-its\"/><sup><a href=#ref-7>[^]</a></sup>William C. Swope and Jed W. Pitera and Frank Suits. 2004. _Describing Protein Folding Kinetics by Molecular Dynamics Simulations. 1. Theory\\textdagger_. [URL](https://doi.org/10.1021/jp037421y)\n", |
1742 | 1747 | "\n", |
1743 | 1748 | "<a id=\"cite-pcca_plus_plus\"/><sup><a href=#ref-8>[^]</a></sup>Susanna Röblitz and Marcus Weber. 2013. _Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification_. [URL](https://doi.org/10.1007/s11634-013-0134-6)\n", |
1744 | 1749 | "\n", |
1745 | | - "<a id=\"cite-mdtraj\"/><sup><a href=#ref-9>[^]</a></sup>McGibbon, Robert T. and Beauchamp, Kyle A. and Harrigan, Matthew P. and Klein, Christoph and Swails, Jason M. and Hernández, Carlos X. and Schwantes, Christian R. and Wang, Lee-Ping and Lane, Thomas J. and Pande, Vijay S.. 2015. _MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories_.\n", |
| 1750 | + "<a id=\"cite-mdtraj\"/><sup><a href=#ref-9>[^]</a></sup>McGibbon, Robert T. and Beauchamp, Kyle A. and Harrigan, Matthew P. and Klein, Christoph and Swails, Jason M. and Hernández, Carlos X. and Schwantes, Christian R. and Wang, Lee-Ping and Lane, Thomas J. and Pande, Vijay S.. 2015. _MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories_.\n", |
1746 | 1751 | "\n", |
1747 | 1752 | "<a id=\"cite-simon-amm\"/><sup><a href=#ref-10>[^]</a></sup>Simon Olsson and Hao Wu and Fabian Paul and Cecilia Clementi and Frank Noé. 2017. _Combining experimental and simulation data of molecular processes via augmented Markov models_. [URL](https://doi.org/10.1073/pnas.1704803114)\n", |
1748 | 1753 | "\n", |
|
1753 | 1758 | "<a id=\"cite-noe-dy-neut-scatt\"/><sup><a href=#ref-13>[^]</a></sup>Benjamin Lindner and Zheng Yi and Jan-Hendrik Prinz and Jeremy C. Smith and Frank Noé. 2013. _Dynamic neutron scattering from conformational dynamics. I. Theory and Markov models_. [URL](https://doi.org/10.1063/1.4824070)\n", |
1754 | 1759 | "\n", |
1755 | 1760 | "<a id=\"cite-hmm-baum-welch-alg\"/><sup><a href=#ref-14>[^]</a></sup>Leonard E. Baum and Ted Petrie and George Soules and Norman Weiss. 1970. _A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains_. [URL](http://www.jstor.org/stable/2239727)\n", |
1756 | | - "\n", |
1757 | 1761 | "\n" |
1758 | 1762 | ] |
1759 | 1763 | } |
|
1774 | 1778 | "name": "python", |
1775 | 1779 | "nbconvert_exporter": "python", |
1776 | 1780 | "pygments_lexer": "ipython3", |
1777 | | - "version": "3.6.5" |
| 1781 | + "version": "3.6.6" |
1778 | 1782 | }, |
1779 | 1783 | "toc": { |
1780 | 1784 | "base_numbering": 1, |
|
0 commit comments