Skip to content

Commit 896ec73

Browse files
committed
use recommended float placing
1 parent 702a823 commit 896ec73

File tree

1 file changed

+24
-24
lines changed

1 file changed

+24
-24
lines changed

manuscript/manuscript.tex

Lines changed: 24 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -248,7 +248,7 @@ \subsection{Variational approach and TICA}
248248

249249
\subsection{Hidden Markov state models}
250250

251-
\begin{figure}
251+
\begin{figure}[ht]
252252
\includegraphics[width=0.48\textwidth]{figure_1}
253253
\caption{The HMM transition matrix $\tilde{\mathbf{P}}(\tau)$ propagates the hidden state trajectory $\tilde{s}(t)$ (orange circles) and, at each time step $t$, the emission into the observable state $s(t)$ (cyan circles) is governed by the emission probabilities $\bm{\chi}\left( s(t) \middle| \tilde{s}(t) \right)$.}
254254
\label{fig:hmm-scheme}
@@ -325,6 +325,15 @@ \section{PyEMMA tutorials}
325325

326326
\subsection{The PyEMMA workflow}
327327

328+
\begin{figure}[ht]
329+
\includegraphics[width=0.48\textwidth]{figure_2}
330+
\caption{The PyEMMA workflow: MD trajectories are processed and discretized (first row).
331+
A Markov state model is estimated from the resulting discrete trajectories and validated (middle row).
332+
By iterating between data processing and MSM estimation/validation,
333+
a dynamical model is obtained that can be analyzed (last row).}
334+
\label{fig:workflowchart}
335+
\end{figure}
336+
328337
In short, the workflow (Fig.~\ref{fig:workflowchart}) for a full analysis of an MD dataset might consist of,
329338
\begin{itemize}
330339
\item extracting molecular features from the raw data (01),
@@ -351,17 +360,18 @@ \subsection{The PyEMMA workflow}
351360
we chose to adopt a sequential approach where only the hyper-parameters of the current stage are optimized.
352361
This approach is not only computationally cheaper but allows us to discuss the significance of the necessary modeling choices.
353362

354-
\begin{figure}[bt]
355-
\includegraphics[width=0.48\textwidth]{figure_2}
356-
\caption{The PyEMMA workflow: MD trajectories are processed and discretized (first row).
357-
A Markov state model is estimated from the resulting discrete trajectories and validated (middle row).
358-
By iterating between data processing and MSM estimation/validation,
359-
a dynamical model is obtained that can be analyzed (last row).}
360-
\label{fig:workflowchart}
361-
\end{figure}
362-
363363
\subsection{Feature selection}
364364

365+
\begin{figure}[bht]
366+
\includegraphics{figure_3}
367+
\caption{Example analysis of the conformational dynamics of a pentapeptide backbone:
368+
(a)~The Trp-Leu-Ala-Leu-Leu pentapeptide in licorice representation~\cite{vmd}.
369+
(b)~The VAMP-2 score indicates which of the tested featurizations contains the highest kinetic variance.
370+
(c)~The sample free energy projected onto the first two time-lagged independent components (ICs) at lag time $\tau=0.5$~ns shows multiple minima and
371+
(d)~the time series of the first two ICs of the first trajectory show rare jumps.}
372+
\label{fig:io-to-tica}
373+
\end{figure}
374+
365375
In Markov state modeling, our objective is to model the slow dynamics of a molecular process.
366376
In order to approximate the slow dynamics in a statistically efficient manner,
367377
a lower dimensional representation of our simulation data is necessary.
@@ -400,16 +410,6 @@ \subsection{Dimensionality reduction}
400410

401411
We demonstrate how to apply TICA, suggest how to interpret the projected coordinates, and compare the results to other dimension reduction techniques in notebook~02.
402412

403-
\begin{figure}
404-
\includegraphics{figure_3}
405-
\caption{Example analysis of the conformational dynamics of a pentapeptide backbone:
406-
(a)~The Trp-Leu-Ala-Leu-Leu pentapeptide in licorice representation~\cite{vmd}.
407-
(b)~The VAMP-2 score indicates which of the tested featurizations contains the highest kinetic variance.
408-
(c)~The sample free energy projected onto the first two time-lagged independent components (ICs) at lag time $\tau=0.5$~ns shows multiple minima and
409-
(d)~the time series of the first two ICs of the first trajectory show rare jumps.}
410-
\label{fig:io-to-tica}
411-
\end{figure}
412-
413413
\subsection{Discretization}
414414

415415
TICA yields a representation of our molecular simulation data with a reduced dimensionality,
@@ -421,7 +421,7 @@ \subsection{Discretization}
421421

422422
\subsection{MSM estimation and validation}
423423

424-
\begin{figure}
424+
\begin{figure}[ht]
425425
\includegraphics{figure_4}
426426
\caption{Example analysis of the conformational dynamics of a pentapeptide backbone:
427427
(a)~The convergence behavior of the implied timescales associated with the four slowest processes.
@@ -456,7 +456,7 @@ \subsection{MSM estimation and validation}
456456

457457
\subsection{Analyzing the MSM}
458458

459-
\begin{figure}
459+
\begin{figure}[ht]
460460
\includegraphics{figure_5}
461461
\caption{Example analysis of the conformational dynamics of a pentapeptide backbone:
462462
(a)~The reweighted free energy surface projected onto the first two independent components exhibits five minima which
@@ -467,7 +467,7 @@ \subsection{Analyzing the MSM}
467467
\label{fig:msm-analysis}
468468
\end{figure}
469469

470-
\begin{figure}
470+
\begin{figure}[ht]
471471
\includegraphics{figure_6}
472472
\caption{Example analysis of the conformational dynamics of a pentapeptide backbone:
473473
visualization of the transition paths from $\mathcal{S}_2$ to $\mathcal{S}_4$.
@@ -537,7 +537,7 @@ \subsection{Analyzing the MSM}
537537

538538
\subsection{Connecting the MSM with experimental data}
539539

540-
\begin{figure}
540+
\begin{figure}[ht]
541541
\includegraphics{figure_7}
542542
\caption{Example analysis of the conformational dynamics of a pentapeptide backbone:
543543
(a)~the Trp-1 SASA autocorrelation function yields a weak signal which, however,

0 commit comments

Comments
 (0)