@@ -64,7 +64,7 @@ async def create_cluster():
6464def test_local_classifier (create_cluster ):
6565 y_data = (y * 10 ).astype (mt .int32 )
6666 classifier = LGBMClassifier (n_estimators = 2 )
67- classifier .fit (X , y_data , eval_set = [(X , y_data )], verbose = True )
67+ classifier .fit (X , y_data , eval_set = [(X , y_data )])
6868 prediction = classifier .predict (X )
6969
7070 assert prediction .ndim == 1
@@ -76,7 +76,7 @@ def test_local_classifier(create_cluster):
7676 X_sparse_data = X_sparse
7777 classifier = LGBMClassifier (n_estimators = 2 )
7878 classifier .fit (
79- X_sparse_data , y_data , eval_set = [(X_sparse_data , y_data )], verbose = True
79+ X_sparse_data , y_data , eval_set = [(X_sparse_data , y_data )]
8080 )
8181 prediction = classifier .predict (X_sparse_data )
8282
@@ -94,7 +94,7 @@ def test_local_classifier(create_cluster):
9494 # test dataframe
9595 X_df_data = X_df
9696 classifier = LGBMClassifier (n_estimators = 2 )
97- classifier .fit (X_df_data , y_data , verbose = True )
97+ classifier .fit (X_df_data , y_data )
9898 prediction = classifier .predict (X_df_data )
9999
100100 assert prediction .ndim == 1
@@ -110,7 +110,7 @@ def test_local_classifier(create_cluster):
110110 y_df = md .DataFrame (y_data )
111111 for weight in weights :
112112 classifier = LGBMClassifier (n_estimators = 2 )
113- classifier .fit (X , y_df , sample_weight = weight , verbose = True )
113+ classifier .fit (X , y_df , sample_weight = weight )
114114 prediction = classifier .predict (X )
115115
116116 assert prediction .ndim == 1
@@ -119,13 +119,13 @@ def test_local_classifier(create_cluster):
119119 # should raise error if weight.ndim > 1
120120 with pytest .raises (ValueError ):
121121 LGBMClassifier (n_estimators = 2 ).fit (
122- X , y_df , sample_weight = mt .random .rand (1 , 1 ), verbose = True
122+ X , y_df , sample_weight = mt .random .rand (1 , 1 )
123123 )
124124
125125 # test binary classifier
126126 new_y = (y_data > 0.5 ).astype (mt .int32 )
127127 classifier = LGBMClassifier (n_estimators = 2 )
128- classifier .fit (X , new_y , verbose = True )
128+ classifier .fit (X , new_y )
129129
130130 prediction = classifier .predict (X )
131131 assert prediction .ndim == 1
@@ -139,7 +139,7 @@ def test_local_classifier(create_cluster):
139139 X_np = X .execute ().fetch ()
140140 new_y_np = new_y .execute ().fetch ()
141141 raw_classifier = lightgbm .LGBMClassifier (n_estimators = 2 )
142- raw_classifier .fit (X_np , new_y_np , verbose = True )
142+ raw_classifier .fit (X_np , new_y_np )
143143
144144 classifier = LGBMClassifier (raw_classifier )
145145 label_result = classifier .predict (X_df )
@@ -162,7 +162,7 @@ def test_local_classifier_from_to_parquet(setup):
162162
163163 # test with existing model
164164 classifier = lightgbm .LGBMClassifier (n_estimators = 2 )
165- classifier .fit (X , y , verbose = True )
165+ classifier .fit (X , y )
166166
167167 with tempfile .TemporaryDirectory () as d :
168168 result_dir = os .path .join (d , "result" )
@@ -239,7 +239,7 @@ def fit(
239239
240240 y_data = (y * 10 ).astype (mt .int32 )
241241 classifier = MockLGBMClassifier (n_estimators = 2 )
242- classifier .fit (X , y_data , eval_set = [(X , y_data )], verbose = True )
242+ classifier .fit (X , y_data , eval_set = [(X , y_data )])
243243 prediction = classifier .predict (X )
244244
245245 assert prediction .ndim == 1
0 commit comments